期刊文献+

基于邻域的可变粒度粗糙集模型 被引量:2

Variable Granulation Neighborhood Rough Set Model
下载PDF
导出
摘要 分析传统粗糙集和邻域多粒度粗糙集的不足之后,在克服乐观多粒度粗糙集模型较为宽松,悲观多粒度粗糙集模型较为严格的缺点的基础上,为使粗糙集理论能从多粒度计算的角度,对名义型和数值型并存的混合型数据进行处理,将邻域多粒度粗糙集模型与可变粒度粗糙集模型相结合,提出了基于邻域的可变粒度粗糙集模型,定义了其下上近似,研究了基于邻域的可变粒度粗糙集模型的一些性质,并证明了基于邻域的可变粒度粗糙集模型是乐观邻域多粒度粗糙集模型和悲观邻域多粒度粗糙集模型的泛化,最后通过实例验证了模型的有效性. By analyzing the weakness of the traditional rough set model and Neighborhood Multi-granulation rough set model,based on overcoming the weakness of optimistic multigranulation rough set model and pessimistic multigranulation rough set model,Combining Neighborhood-based multigranulation rough set model and Variable granulation rough set,Variable Granulation Neighborhood rough set model is proposed. This model can make the rough set theory be calculated from the multi granularity perspective,and deal with the heterogeneous data including categorical attributes and numerical attributes. The formal definition of the upper and lower approximation sets of Variable Granulation Neighborhood rough set model were given. Furthermore,the properties of this rough sets modol was discussed,and that the Variable granulation Neighborhood rough set is the generalization of optimistic Neighborhood-based multigranulation rough set model and pessimistic Neighborhood-based multigranulation rough set model was proved,The effectiveness of the proposed model is verified by an example.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第7期1513-1517,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61402005) 安徽省自然科学基金项目(1308085QF114 1508085MF127) 安徽省高等学校省级自然科学基金项目(KJ2013A015 KJ2011Z020) 安徽大学计算智能与信号处理教育部重点实验室课题项目 安徽大学信息保障技术协同创新中心公开招标课题项目(ADXXBZ2014-6)资助 博士科研启动基金项目(J10113190072)资助
关键词 多粒度粗糙集 邻域多粒度粗糙集 可变粒度粗糙集 multi-granulation rough set neighborhood multi-granulation rough set variable granulation rough set
  • 相关文献

参考文献16

  • 1Pawlak Z. Rough sets[ J ]. International Journal of Computer and In- formation Sciences, 1982,11 (5) :341-356.
  • 2Sun B Z, Ma W M. Soft fuzzy rough sets and its application in deci- sion making[ I ] : Artificial Intelligence Review ,2014,41 ( 1 ) :67- 80.
  • 3Chal J Y,Liu J N K. A novel believable rough set approach for sup- plier selection [ J ]. Expert Systems with Applications, 2014,41 ( 1 ) : 92-104.
  • 4Dai J H,Xu Q. Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification [ J ]. Applied Soft Computing,2013,13 ( 1 ) : 211-221.
  • 5Pal Ping-feng, Li Lan-Lin, Hung Wei-zhan, et al. Using ADA- BOOST and rough set theory for predicting debris flow disaster [ J]. Water Resoumes Management,2014,28 (4) : 1143-1155.
  • 6Peng L, Niu R Q, Huang B, et al. Landslide susceptibility mapping based on rough set theory and support vector machines: a case of the three gorges area, China [ J ]. Geomorphology, 2014,204 ( 1 ) : 287- 301.
  • 7Lin T K, Lin Q, Huang K J. Rough sets neighborhood systems and approximation[ C]. Fifth International Symposium on Methodolo- gies of Intelligent Systems, 1990.
  • 8Lin T Y. Granular computing[ C]. Announcement of the BISC Spe- cial Interest Group on Granular Computing, 1997.
  • 9Qian Y H,Liang J Y,Yao Y Y C,et al. MGRS:a multigranulation rough set [ J ]. Information Sciences,2010,180 (5) :949-970.
  • 10Qian Y H, Liang J Y, Dang C Y. Incomplete multigranulation rough set[ J]. IEEE Transactions on Systems,Man and Cybernet- ics,Part A,2010,40(2) :420-431.

二级参考文献52

  • 1Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about Data, System Theory, Knowledge Engineering and Problem Sol- ving. Dordrecht, Netherlands: Kluwer, 1991.
  • 2Pawlak Z, Skowron A. Rudiments of Rough Sets. Information Sci- ences, 2007, 177(1) : 3 -27.
  • 3Duntsch I, Gediga G. Uncertainty Measures of Rough Set Predic- tion. Artificial Intelligence, 1998, 106(1): 109-137.
  • 4Jensen R, Shen Qiang. Fuzzy-Rough Sets Assisted Attribute Selec-tion. IEEE Trans on Fuzzy Systems, 2007, 15(1) : 73 -89.
  • 5Jeon G, Kim D, Jeong J. Rough Sets Attributes Reduction Based Expert System in Interlaced Video Sequences. IEEE Trans on Con- sumer Electronics, 2006, 52(4): 1348-1355.
  • 6Liang Jiye, Chin K S. A New Method for Measuring Uncertainty and Fuzziness in Rough Set Theory. International Journal of General Systems, 2002, 31(4): 331 -342.
  • 7Qian Yuhua, Liang Jiye, Dang Chuanyin. Incomplete Multigranula- tion Rough Set. IEEE Trans on Systems, Man and Cybernetics, 2010, 40(2) : 420 -431.
  • 8Qian Yuhua, Liang Jiye, Li Deyu, et al. Approximation Reduction in Inconsistent Incomplete Decision Tables. Knowledge-Based Sys- tems, 2010, 23(2) : 427 -433.
  • 9Xu Z B, Liang J Y, Dang C Y, et al. Inclusion Degree : A Perspec- tive on Measures for Rough Set Data Analysis. Information Sci- ences, 2002, 141(3/4): 227-236.
  • 10Ziarko W. Variable Precision Rough Sets Model. Journal of Com- puter System Science, 1993, 46 ( 1 ) : 39 - 59.

共引文献92

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部