摘要
分析传统粗糙集和邻域多粒度粗糙集的不足之后,在克服乐观多粒度粗糙集模型较为宽松,悲观多粒度粗糙集模型较为严格的缺点的基础上,为使粗糙集理论能从多粒度计算的角度,对名义型和数值型并存的混合型数据进行处理,将邻域多粒度粗糙集模型与可变粒度粗糙集模型相结合,提出了基于邻域的可变粒度粗糙集模型,定义了其下上近似,研究了基于邻域的可变粒度粗糙集模型的一些性质,并证明了基于邻域的可变粒度粗糙集模型是乐观邻域多粒度粗糙集模型和悲观邻域多粒度粗糙集模型的泛化,最后通过实例验证了模型的有效性.
By analyzing the weakness of the traditional rough set model and Neighborhood Multi-granulation rough set model,based on overcoming the weakness of optimistic multigranulation rough set model and pessimistic multigranulation rough set model,Combining Neighborhood-based multigranulation rough set model and Variable granulation rough set,Variable Granulation Neighborhood rough set model is proposed. This model can make the rough set theory be calculated from the multi granularity perspective,and deal with the heterogeneous data including categorical attributes and numerical attributes. The formal definition of the upper and lower approximation sets of Variable Granulation Neighborhood rough set model were given. Furthermore,the properties of this rough sets modol was discussed,and that the Variable granulation Neighborhood rough set is the generalization of optimistic Neighborhood-based multigranulation rough set model and pessimistic Neighborhood-based multigranulation rough set model was proved,The effectiveness of the proposed model is verified by an example.
出处
《小型微型计算机系统》
CSCD
北大核心
2016年第7期1513-1517,共5页
Journal of Chinese Computer Systems
基金
国家自然科学基金项目(61402005)
安徽省自然科学基金项目(1308085QF114
1508085MF127)
安徽省高等学校省级自然科学基金项目(KJ2013A015
KJ2011Z020)
安徽大学计算智能与信号处理教育部重点实验室课题项目
安徽大学信息保障技术协同创新中心公开招标课题项目(ADXXBZ2014-6)资助
博士科研启动基金项目(J10113190072)资助
关键词
多粒度粗糙集
邻域多粒度粗糙集
可变粒度粗糙集
multi-granulation rough set
neighborhood multi-granulation rough set
variable granulation rough set