期刊文献+

帧删除篡改检测及定位

Detection and Localization for Frame Deletion Forgery
下载PDF
导出
摘要 帧删除篡改是一种常见的视频篡改方式,篡改者通过删除一些帧来达到改变视频内容的目的.经过多次实验,本文提出一种新的检测算法.为了便于传输与存储,视频几乎都经过有损压缩,有损压缩会造成数据丢失,导致两帧之间的相似度随着帧间间隔的增加而降低.根据这一特点,算法利用结构相似度来测量相邻帧之间的相似度值,由给定阈值找到异常点,实现帧删除篡改检测与定位.实验证明,算法对静止摄像机拍摄的视频进行帧删除篡改检测结果很好,即使视频被删除的是整个GOP组(a group of pictures)或者是GOP组的整数倍,也能正确检测并定位,并且不受再压缩,格式转换等因素的影响. Frame deletion forgery is a very common way of video tampering in the temporal domain. By removing some frames from the video sequence,an attacker can change the video content easily. After several experiments,a newmethod is proposed in this paper. To facilitate the transmission and storage,most videos accept lossy compression basically,which leading to similarity between frames decreased with the increase of distance. According to this feature,the proposed method employs the structure similarity to measure the similarity between adjacent frames,and uses the threshold as evidence to find out outliers,and achieves frame deletion forgery detection and localization. Experiment results demonstrate that the proposed method can localize the point where frames has been deleted for videos captured by stationary camera. Even if the number of frames has been deleted is an integer multiple of the GOP length of the tampered video,the algorithm can work and not affected by recompression,format conversion.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第7期1588-1593,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61070062)资助 福建省高校产学合作科技重大项目(2012H6006)资助
关键词 视频篡改检测 结构相似性 视频压缩 帧差法 video forgery detection structural similarity video compression frame difference method
  • 相关文献

参考文献2

二级参考文献26

  • 1陈娟,夏军,尹涵春.压缩视频码流中运动矢量的提取[J].电子器件,2006,29(4):1342-1345. 被引量:4
  • 2秦运龙 孙广玲 张新鹏.利用运动矢量进行视频篡改检测.计算机研究与发展,2009,46:227-233.
  • 3LUKAS J, FRIDRICH J, GOLJAN M. Digital camera identification from sensor pattern noise [ J ]. IEEE Trans- actions on Information Forensics and Security, 2006, 1 (2) : 205-214.
  • 4LUKAS J, FRIDRICH J, GOLJAN M. Detecting digital image forgeries using sensor pattern noise [ C ]//Proceedings of SPIE Electronic Imaging, Photonics West. San Jose, USA: the SPIE, 2006:362-372.
  • 5HSU C, HUNG T, LIN C, et al. Video forgery detection using correlation of noise residue [ C ]//Proceedings of the 10th Workshop on Multimedia Signal Processing. Cairns, Australia: IEEE Computer Society, 2008: 170-174.
  • 6KOBAYASHI M, OKABE T, SATO Y. Detecting video forgeries based on noise characteristics E C ]//Proceedings of the 3rd Pacific-Rim Symposium on Image and Video Technology. Berlin Heidelberg, Germany: Springer-Verlag, 2009: 306-317.
  • 7HEN M, FRIDRICH J, GOLJAN M, et al. Determining image origin and integrity using sensor noise [ J ]. IEEE Transactions on Information Forensics and Security, 2008, 3 ( 1 ) : 74-90.
  • 8BAYRAM S, SENCAR H, MEMON N. Source camera identification based on CFA interpolation[ C]//Proceedings of IEEE International Conference on Image Processing. Washington, USA: IEEE Signal Processing Society, 2005 : 69-72.
  • 9LONG Y, HUANG Y. Image based source camera identification using demosaicking [ C ]//Proceedings of the 8^th Workshop on Multimedia Signal Processing. Washington, USA: 1EEE Computer Society, 2006: 419-424.
  • 10CHOI K, IAM E, WONG K. Automatic source camera identification using the intrinsic lens radial distortion [J]. Optics Express, 2006, 14(24) : 11551-11565.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部