期刊文献+

一种运用图熵的医学图像聚类方法 被引量:4

Medical Image Clustering Method Based on Graph Entropy
下载PDF
导出
摘要 近些年,各种医学影像技术被广泛应用于临床诊断中.由于医院每天都会产生大量的医学图像,如何利用好这些医学图像,对其进行有效聚类,以此来辅助医生对疾病进行诊断,是当前医学图像数据挖掘领域所研究的热点问题之一.本文提出一种医学图像聚类方法,首先,将医学图像集抽象成一个带权无向完全图,之后对其进行稀疏化剪枝处理,以此来对医学图像之间进行更好的相似性描述,最后,又提出了一种运用图熵的带权无向图聚类方法,通过此方法来实现对医学图像的聚类.实验结果表明,本文所提出的聚类方法能够有效对医学图像进行聚类,并在时间损耗及聚类结果等方面表现良好. Recently,a variety of medical imaging technologies have been used widely in clinical diagnosis. As a large number of medical images are produced everyday,it is a hot issue of data mining on medical image at the moment that howto make full use of these medical images and cluster efficiently to help doctors to diagnose. In this paper,a medical image clustering method is proposed. Firstly,medical image dataset is represented as a weighted,undirected and completed graph. Secondly,the graph is sparsified and pruned. This model can describe the similarity between medical images very well. Finally,weighted and undirected graph clustering method based on graph entropy is proposed to cluster these medical images. The experimental results showthat this method can cluster medical images efficiently and run well in time complexity and clustering results.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第7期1594-1599,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61370084 61272184 61202090 61100007)资助 新世纪优秀人才支持计划项目(NCET-11-0829)资助 中央高校自由探索计划项目(HEUCF100602)资助
关键词 图熵 医学图像 稀疏化剪枝 聚类方法 graph entropy medical image sparsification clustering method
  • 相关文献

参考文献19

  • 1Ai-Jun Y, Xin-Yuan S. Bayesian variable selection for disease clas- sification using gene expression data [ J ]. Bioinformatics, 2010,26 (2) :215-222.
  • 2Rajendran P, Madheswaran M. Hybrid medical image classification using association rule mining with decision tree algorithm [ J ]. Computing Research Repository ,2010,2( 1 ) :1001-3503.
  • 3SzilaGyi L S, SzilaGyi S N M, Benya B Z. Efficient inhomogeneity compensation using fuzzy c-means clustering models [ J ]. Computer Methods and Programs in Biomedicine,2012,108 ( 1 ) :80-89.
  • 4Moftah H M, Azar A T, A1-Shammari E T, et al. Adaptive k-means clustering algorithm for MR breast image segmentation [ J ]. Neural Computing and Applications ,2014,24(7 -8 ) :1917-1928.
  • 5Rahmani M K I, Pal N, Arora K. Clustering of image data using K- means and fuzzy K-Means [ J ]. International Journal of Advanced Computer Science and Applications ( IJACSA ), 2014, 5 ( 7 ) : 160-163.
  • 6Y Y. Image clustering using local discriminant models and global integration[ J]. IEEE Transactions on Image Processing, 2010, 19 (10) :2761-2773.
  • 7Van Dongen S M. Graph clustering by flow simulation[ D]. Univer- sity of Utrecht ,2001.
  • 8Satuluri V, Parthasarathy S. Scalable graph clustering using stochas- tic flows : applications to community discovery [ C ]. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM ,2009:737-746.
  • 9Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning irregular graphs[ J]. SIAM Journal on Scientific Com- puting, 1998,20( 1 ) :359-392.
  • 10Dhillon I S, Guan Y, Kulis B. Weighted graph cuts without eigen- vectors a multilevel approach[ J]. Pattern Analysis and Machine In- telligence, IEEE Transactions on, 2007,29 ( 11 ) : 1944-1957.

同被引文献25

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部