期刊文献+

基于密度轨迹与句法规则的复杂行为识别

Recognition of Complex Behavior Using Density Track and Syntax Rules
下载PDF
导出
摘要 人体行为识别是计算机视觉研究中重要的领域.为了识别视频流中复杂的人体行为,提出一种新的框架.特征提取上,提取了轨迹形状描述符、SURF(结构描述符)和HOF(运动描述符)作为特征描述符.识别上采用了先简单后复杂的行为识别过程,首先利用HMM对简单的行为建模,然后根据句法规则描述复杂行为并进行识别.为了验证文中所提方法的有效性,在公共数据库上对该法进行了验证,并与其他方法进行了对比实验,结果表明所提的方法在识别复杂行为上很有效. Human behavior recognition is an important areas of computer vision research. A newframework is proposed to recognize complex human behavior in the video streams. As for feature extraction,use track shape descriptors,SURF( structure descriptor) and HOF( motion descriptor) as feature descriptors. And for recognition use a method first for simple behavior recognition then for complex behavior recognition,first use HMMfor simple behavior modeling,then describe the complex behavior based on syntactic rules and recognition. To verify the validity of the proposed method,experiment on public database compared with other methods,the results showthat the method is effective in complex behavior recognition.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第7期1613-1617,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(50808025)资助 湖南省科技计划项目(2014FJ3057)资助
关键词 密度根轨迹 HOF SURF HMM density track HOF SURF HMM
  • 相关文献

参考文献21

  • 1Laptev I. On space-time interest points[ J]. International Journal of Computer Vision,2005,1 (2-3) :432-439.
  • 2Dollar P, Raband V, Cottrell G, et al. Behavior recognition via sparse spatio-temporal features [ C ]. Visual Surveillance and Per- formance Evaluation of Tracking and Surveillance, 2005 2nd Joint IEEE International Worshop on Beijing,lEEE,2005:65-72.
  • 3Laptev I, Marszalek M, Schmid C, et al. Learning realistic human actions from movies[ C]. Conference on Computer Vision and Pat- tern Recognition, IEEE, 2008 : 1-8.
  • 4Schuldt C, Laptev I, Caputo B. Recognizing human actions: a local SVM approach [ C ]. International Conference on Pattern Recogni- tion, Icpr. IEEE, 2004: 32 -36.
  • 5Scovanner P, Ali S, Shah M. A 3-dimensional sift descriptor and its application to action recognition [ C ]. Multimedia Proceedings of the 15th/ntemational Conference on Multimedia, New York, ACM, 2007:357-360.
  • 6Kloer A,Marszalek M,Schmid C,et al. A spatio-temporal descrip- tor based on 3D-gradients[ C]. t9th British Machine Vision Confer- ence, Leeds: Springer-verlag ,2008:20-30.
  • 7Eric C, Vincent R, Andrew Z. Match-time covariance for descriptor [ J]. 24th British Machine Vision Conference, Bristol: Springer-ver- lag ,2013 : 12-27.
  • 8Dryden I L, Mardia K V. Statistical analysis of shape [ M ]. Wiley, 1998.
  • 9Murphy K P. Dynamic bayesian networks: representation, inference and learning[ D ]. University of California,Berkeley ,2002.
  • 10Rabiner L, Juang B H. An introduction to hidden Markov models [ J ]. ASSP Magazine, IEEE, 1986,3 ( 1 ) :4-16.

二级参考文献22

  • 1石跃祥,蔡自兴.图像语义的模型结构描述[J].计算机工程与应用,2004,40(20):44-46. 被引量:6
  • 2仝明磊,潘海朗,刘允才.利用卷积曲面模型的人体运动姿势估计[J].上海交通大学学报,2006,40(7):1122-1125. 被引量:2
  • 3李振波,李华.基于运动生物力学的三维人体运动模型[J].系统仿真学报,2006,18(10):2992-2994. 被引量:9
  • 4李和平,胡占义,吴毅红,吴福朝.基于半监督学习的行为建模与异常检测[J].软件学报,2007,18(3):527-537. 被引量:30
  • 5Turaga P, Chellappa R, Subrahmanian V S, Udrea O. Machine recognition of human activities: A survey. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(11): 1473-1488.
  • 6Niebles J C, Wang H, Li Fei-Fei. Unsupervised learning of human action categories using spatial-temporal words. International Journal of Computer Vision, 2008, 79(3): 299-318.
  • 7Oliver N M, Rosario B, Pentland A P. A Bayesian computer vision system for modeling human interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8) : 831-843.
  • 8Xiang T, Gong S. Beyond tracking: Modeling activity and understanding behavior. International Journal of Computer Vision, 2006, 67(1): 21-51.
  • 9Ivanov Y A, Bobick A F. Recognition of visual activities and interactions by stochastic parsing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (8): 852-872.
  • 10Park S, Aggarwal J K. A hierarchical Bayesian network for event recognition of human action and interaction. ACM Journal of Multimedia Systems, Special Issue on Video Surveillance, 2004, 10(2): 164-179.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部