期刊文献+

CH_2=CHCOOCH_3与O_3反应机理及速率常数的理论研究

Computational study on the reaction mechanism and kinetics of CH_2=CHCOOCH_3 ozonolysis
原文传递
导出
摘要 采用CBS-QB3方法构建了丙烯酸甲酯(CH_2=CHCOOCH_3)与O_3反应体系的势能剖面并在此基础上利用经典过渡态理论(TST)和Wigner矫正模型计算了标题反应在200K^1200K温度区间内的速率常数kTST/W.研究结果表明,CH_2=CHCOOCH)3与O)3反应首先经过渡态生成一个稳定的五元环中间体,然后按断键位置不同,分别生成产物P1(CH_3OCOCHO+CH_2O_2)和P2(CH)3OCOCHOO+HCHO).此外,速率常数结果显示,在计算温度范围内,标题反应速率常数呈正温度系数效应.294K时,CH_2=CHCOOCH_3与O_3反应速率常数为1.76×10-18cm^3·molecule^(-1)·s^(-1),与所测实验值(0.95±0.07)×10^(-18)cm^3·molecule^(-1)·s^(-1)非常接近. The mechanism for the reaction between ozone and CH_2=CHCOOCH_3 was investigated at the CBS-QB_3 level of theory. The calculated results show that ozone adds to CH_2=CHCOOCH_3 via a fivemembered ring transition state to produce a highly unstable primary ozonide which can decompose readily to form P1(CH_3OCOCHO+CH_2O_2) and P2(CH_3OCOCHOO+HCHO), respectively, due to the bond breaking in different position. The total rate constants are obtained by using the conventional transition state theory with Wigner tunneling correction in the temperature range of 200 K^1 200 K. The calculated result of rate constant(1.76×10^(-18) cm^3·molecule^(-1)·s^(-1) at 294 K) shows the title rate constant increases with the temperature increase, which is in good agreement with the experimental data of(0.95±0.07)×10-18 cm3·molecule^(-1)·s^(-1).
出处 《分子科学学报》 CAS CSCD 北大核心 2016年第3期228-234,共7页 Journal of Molecular Science
基金 陕西省教育厅科研项目(14JK1154) 陕西理工学院科研计划资助项目(SLGQD13(2)-3 SLGQD13(2)-4)
关键词 CH2=CHCOOCH3 O3 Criegee机理 反应机理 速率常数 CH2=CHCOOCH3 O3 criegee mechanism reaction mechanism rate constant
  • 相关文献

参考文献26

  • 1YANG J, LI Q S,ZHANG S W. [J].J Comput Chem,2008,29:247-255.
  • 2WANG Y C, DAI G L, GENG Z Y, et al. [J]. Acta Phys Chim Sin, 2004, 20(9) : 1071-1077.
  • 3ATKINSON R, AREY J. [J]. J Chem Rev, 2003, 103 (12) : 4605-4638.
  • 4SUN T L, WANG Y D, ZHANG C X, et al. [J]. Acta Chim Sin, 2011,69( 17): 1965-1972.
  • 5杨静,阚玉和,徐文国,李炳焕,沈玉龙.烯丙醇与臭氧反应机理的密度泛函理论研究[J].分子科学学报,2010,26(2):92-98. 被引量:2
  • 6COTTER E S N, BOOTH N J, CANOSA-MAS C E, et al.[J].Atmos Environ,2001,35(12):2169-2178.
  • 7SUN Y, CAO H, HAND. [J]. Comput Theor Chem, 2014,1039(7) : 33-39.
  • 8ZHOU S M, BARNES I, ZHU T, et al. [J]. J.Phys Chem A, 2009, 113: 858-865.
  • 9GROSJEAN E, GROSJEAN D. [J]. J Atoms Chem, 1997, 27(3) : 271-275.
  • 10BERNARD F, EYGLUNENT G,DAELE V, et al. [J]. J Phys Chem A,2010,114(32):8376-8383.

二级参考文献139

  • 1CREMER D, CREHUET R, ANGLADA J M. [J]. J Am Chem Soc,2001,123:6127-6141.
  • 2LI Q S, YANG J,ZHANG S W. [J] .J Phys Chem A,2006,110:11113-11119.
  • 3YANG J, LI Q S, ZHANG S W. [ J ]. International Journal of Quantum Chemistry, 2007,107 : 1999-2005.
  • 4YANG J,LI Q S,ZHANG S W. [J] .J Comput Chem,2008,29:247-255.
  • 5GILLIES C W, GILLIES J Z, LOVAS F J, et al. [ J ]. J Am Chem Soc, 1991,113 : 6408-6415.
  • 6CREHUET R, ANGLADA J M, CREMER D, et al. [J]. J Phys Chem A, 2002,106:3917-3929.
  • 7CREMER D. [J]. J Am Chem Soc, 1981,103:3619-3626.
  • 8CREMER D, KRAKA E, CREHURT R. [ J ]. Chem Phy Lett, 2001,347 : 268-276.
  • 9HASSON A S,CHUNG M Y, KUWATA K T, et al. [J].J Phys Chem A,2003,107:6176-6182.
  • 10STEVEN E W, DANIEL H E, HOUK K N. [ J ]. J Phys Chem A, 2008,112:1798-1807.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部