期刊文献+

分数阶微分方程边值问题的Picard’s迭代方法

Picard's Iterative Method for the Boundary Value Problem of a Class of the Fractional Order Differential Equation
下载PDF
导出
摘要 从分数阶微分方程边值问题的近似解出发,应用Picard’s迭代方法证明了其存在唯一解;研究了非线性函数f(t;x(t),x'(t))由一个函数序列{fm(t;x(t),x'(t))}近似代替时,边值问题解的Picard’s迭代序列满足的形式及其存在唯一解的充要条件;讨论了这类边值问题不考虑近似解以及非线性函数Lipschitz类的因素时,其解的一般性存在条件;最后通过两个数值算例验证了这类边值问题解的存在性以及解与其迭代序列的误差估计. In this article the existence and uniqueness of the solution for the boundary value problem of a class of fractional differential equations is proved by the Picard's iterative method starting form the approximate solution of boundary value problems of these equations. We also proved the existence and uniqueners of the solution and provided the sufficient conditions for the boundary value problem by the Picard's iterative methods when the nonlinear function f( t; x( t),x'( t)) is approximated instead of by a sequence of functions { fm( t; x( t),x'( t)) }.The general condition for the existence of its solution is discussed without considering factors like the approximate solution of such boundary value problems and nonlinear function Lipschitz-class. Finally,the existence of the solution of such boundary value problems and the estimation of error between the accurate solution and the solution of iterative sequence are verified by two numerical examples.
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2016年第2期82-89,共8页 Journal of Natural Science of Hunan Normal University
基金 广东省自然科学基金资助项目(S2012010010069) 中山大学广东省计算科学重点实验室开放基金资助项目(201206015) 韶关市科技计划基金资助项目(2011CX/K20)
关键词 分数阶微分方程 迭代方法 近似解 误差估计 fractional differential equations iterative method approximate solution estimation of error
  • 相关文献

参考文献12

  • 1AGARWAL R P, BENCHOHRA M, HAMANI S. Boundary value problems for fractional differential equations[ Jl. J Georgian Math, 2009,16(3) :401-411.
  • 2BENCHOHRA M, HAMANI S, NTOUYAS S K. Boundary value problems for differential equations with fractional order[ J ]. Surv Math Appl, 2008,3 (3) : 1-12.
  • 3BENCHOHRA M, HAMANI S, NTOUYAS S K. Boundary value problems for differential equations with fractional order and nonlocal conditions [ J ]. Nonlinear Anal, 2009,71 (5) :2391-2396.
  • 4ZHANG S Q. Positive solutions for boundary-value problems of nonlinear fractional differential equations [ J ]. Electron J Diff Equ, 2006,36(2) :1-12.
  • 5SUN Y F, WANG P G. Quasilinear iterative scheme for a fourth-order differential equation with retardation and anticipation[ J]. Appl Math Comput, 2010,217(4) :3442-3452.
  • 6WANG P G. Iterative methods for the boundary value problem of a fourth order DDE[J]. Appl Math Comput, 1995,73 (2) : 257-270.
  • 7SUN Y F, WANG P G. Iterative methods for a fourth-order differential equations with retardation and anticipation [ J ]. Dyn Cont Disc Impuls Syst, Series B, 2010,17 ( 1 ) :487-500.
  • 8PODLUBNY I. Fractional Differential equations[ M]. New York: Academic Press, 1999.
  • 9RALL L B. Computational Solutions of Nonlinear Operator[ M ]. New York :John Wiley, 1969.
  • 10GRANAS A, DUGUNDJI J. Fixed point theory[ M]. New York:Springer-Verlag,2003.

二级参考文献56

  • 1徐明瑜,谭文长.中间过程、临界现象——分数阶算子理论、方法、进展及其在现代力学中的应用[J].中国科学(G辑),2006,36(3):225-238. 被引量:34
  • 2Miller K S,Ross B. An introduction to the fractional calculus and fractional differential equations[M]. New York: John Wiley & Sons, 1993.
  • 3Podlubny I. Fractional differential equations[M]. San Diego:Acad Press,1999.
  • 4Samko S G,Kilbas A A,Maritchev O I. Integrals and derivatives of the fractional order and some of their applications[M]. Minsk: Naukai Tekhnika, 1987.
  • 5Benchohra M, Henderson J, Ntouyas S K,et al. Existence results for fractional order functional differential equations with infinite delay[J]. J Math Anal Appl,2008,338(2) :1340.
  • 6Oldham K B,Spanier J. The fractional calculus[M]. New York:Acad Press,1974.
  • 7Kiryakova V. Generalized fractional calculus and applications[G]//Pitman Research Notes in Math:301. Harlow: Longman, 1994.
  • 8Blair G W S. Some aspects of the search for invariants[J]. Br J for Philosophy of Sci,1950,1(3):230.
  • 9Blair G W S. The role of psychophysics in theology[J]. J of Colloid Sci,1947(2) -21.
  • 10Westerlund S. Dead matter has memory! [J]. Physica Scripta, 1991,43 : 174.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部