期刊文献+

BMAP模型中最优分红和注资问题

Optimal Dividend and Capital Injection Problem in a BMAP Model
下载PDF
导出
摘要 研究了BMAP(Batch Markov Arrival Process)模型中有分红和资金注入的情况下,公司的最优分红和注资问题.假设公司的盈余过程中的参数由BMAP模型中的相过程调制.在不同的跳跃点上,该公司有不同的分红和注资机会:在BMAP的一些跳跃点上,公司既没有分红也没有注资;在BMAP的一些跳跃点上,公司只有分红没有注资;在BMAP的另外一些跳跃点上,公司既有分红又有注资.通过将BMAP模型转化为辅助马氏调制模型的方法,在公司不破产的情况下,考虑公司的最优分红和注资问题,旨在使期望折现分红总量与折现注资量之差达到最大,得到了值函数的精确解以及最优分红-注资策略. This paper studies the optimal dividend and capital injection problem of a company in a BMAP (Batch Markov Arrival Process) model. The parameters in the process of the company's surplus are modulated by the phase process of the BMAP, which is an observable continuous-time Markov chain. The possible dividend and capital injection are restricted to some random discrete time points which are determined by the same BMAP. The company has both dividend and capital injection opportunities or only has dividend but not capital injection opportu- nities at some of these time points, while can do nothing at other random time points. By transforming the BMAP model to an auxiliary Markov modulated model, we study the optimal dividend and capital injection problem of the company under the assumption that the company will not bankrupt. This paper aims to maximize the difference between the total expected discounted dividend and the amount of capital and obtain the exact solution of the value functions and the optimal dividend and capital injection strategy.
作者 白燕飞 陈旭
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2016年第3期62-68,共7页 Journal of Natural Science of Hunan Normal University
基金 国家青年科学基金资助项目(11401204) 湖南省研究生科研创新基金资助项目(CX2015B163)
关键词 BMAP模型 分红与注资 Bellman方程 MARKOV决策过程 随机观察 BMAP model dividend and capital injection Bellman equation Markov decision process random observation
  • 相关文献

参考文献12

  • 1PENG X F, CHEN M, GUO J Y. Optimal dividend and equity issuance problem with proportional and fixed transaction costs [ J]. Insurance:Math Econ, 2012,51 (3) :576-585.
  • 2YAO D, YANG H, WANG R. Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs[J]. Eur J Oper Res, 2011,16(3) :568-576.
  • 3BELHAJ M. Optimal dividend payments when cash reserves follow a jump-diffusion process [ J]. Math Finance, 2010,20(2) : 313-325.
  • 4AVANZI B, SHEN J, WONG B. Optimal dividends and capital injections in the dual model with diffusion[ J]. Astin Bull, 2011,41 (2) :611-644.
  • 5WU Y D, GUO J Y, TANG L. Optimal dividend strategies in discrete risk model with capital injections [ J ]. Appl Stoch Mod Bus Ind, 2011,27(2) :557-566.
  • 6ALBRECHER H, CHEUNG E C K, THONHAUSER S S. Randomized observation periods for the compound poisson risk mod- el: the discounted penalty function[ J]. Scand Act J, 2013 : 1-29.
  • 7ALBRECHER H, CHEUNG E C K, THONHAUSER S S. Randomized observation periods for the compound poisson risk mod- el : dividends [ J ]. Astin Bull, 2011,41 ( 2 ) : 45-672.
  • 8CHEN X, YANG X Q. Optimal consumption and investment problem with random horizon in a BMAP model [ J ]. Insurance: Math Econ, 2015,61 ( 1 ) : 197-205.
  • 9JAMES D C, JEFFREY P K. Batch Markovian Arrival Processes[ EB/OL]. http://www, pitt. edu/- jkharouf/Papers/Cordei- ro Khar_BMAPv0. pdf.
  • 10陈童,李羚玮,郭波.批量马尔可夫到达过程概述[J].数学的实践与认识,2009,39(17):128-137. 被引量:1

二级参考文献41

  • 1Neuts M F. A versatile markovian point process[J]. Journal Application of Probability,1979, (16):764-779.
  • 2Ramaswami V. The N/G/1 queue and its detailed analysis[J]. Journal Application of Probability,1980, (12) :222- 261.
  • 3Lucantoni D M, Meier Hellstern K S, Neuts M F. A single server queue with server vacations and a class of non- renewal arrival proeesses[J]. Advance in Applied Probability, 1990,22(3) : 676-705.
  • 4Asmussen S, Koole G. Marked point processes as limits of Markovian arrival streams[J]. Journal Application of Probability, 1993,30 : 365-372.
  • 5Neuts M F. Matrix-Geometric Solutions in Stochastic Models An Algorithmic Approach[M]. Baltimore: Johns Hopkins University Press, 1981.
  • 6Ramaswami V. Matrix analytic methods: A tutorial overview with some extensions and new results[C]//Matrix Analytic Methods in Stochastic Models, 1996.
  • 7Latouche G, Ramaswaml V. Introduction to matrix analytic methods in stochastic modeling[C]//SIAM, 1999.
  • 8Kim J, Jun C-H. Analysis of a discrete-Time queueing system with a single server and heterogeneous markovian arrivals[J]. Queueing Systems, 2002, (42) :221-237.
  • 9Herrmann C. The complete analysis of the discrete time finite DBMAP/G/1/N queue [J]. Performance Evaluation, 2001,43:95-121.
  • 10Gupta U C, Sikdar K. Computing queue length distributions in MAP/G/1/N queue under single and multiple vacation [J]. Applied Mathematics and Computation, 2006,174 : 1498-1525.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部