期刊文献+

关于半模复形同调理论的若干研究

Some Studies of Homology Theory on Semimodule Complex
下载PDF
导出
摘要 在半模范畴中,针对半环和半模的加法都无逆运算,利用泛代数的思想,在同余的观点下定义了半模复形和复形链映射及复形同调函子,给出了一个半模复形为正合列的条件,并把环模上的连接同态定理在一定的条件下推广到了半模上,且得到了较弱的半模复形的长正合列定理. In the category of semimodules,the concept of semimodule complex and chain mapping and complex homology functor are defined in view of congruence using the idea of universal algebra,for the addition of the semiring and semimodule are no inverse operation,also a condition of complex to be exact sequences is given. The connecting homomorphism theorem is extended to the semimodules under certain conditions,and got the weakly long exact sequence theorem of semimodules complex.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2016年第3期258-262,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(11261021)资助项目
关键词 半模正合列 复形 连接同态 the exact sequences of semimodules complex connecting homomorphism
  • 相关文献

参考文献17

  • 1Dao Hailong, Sehweig J. Projective dimension, graph dom- ination parameters, and independence complex homology [ J]. Journal of Combinatorial Theory: Series A ,2013,120 (2) :453-469.
  • 2Bagdasar O D, Larcombe P J. On the characterization of periodic complex horadam sequences [ J ]. The Fibonacci Quarterly ,2013,51 ( 1 ) :28-37.
  • 3Patchkoria A. On exactness of long sequences of homology semimodules [ J ]. Journal of Homotopy and Related Struc- tures ,2006,1 ( 1 ) :229-243.
  • 4Chaudhari J N, Bonde D R. On subtractive extension of subsemimodules of semimodules [ J ]. Journal of the Chun- gcheong Mathematical Society,2013,26 ( 1 ) :37-44.
  • 5David W, Marianne J, Mark K. Exact rings and semirings [J]. Journal of Algebra,2013,388(4) :324-337.
  • 6A1-Thani H M J. Flat semimodules [ J ]. International Jour- nal of Mathematics and Mathematical Sciences, 2004 (17) :873-880.
  • 7A1-Thani H M J. Characterizations of projective and K-pro- jective semimodules [ J l-Kohe J Math ,2002,32 (7) :439- 448.
  • 8Katsov Y. On flat semimodules over semirings [ J ]. Alge- bra Univers ,2004,51 (2/3) :287-299.
  • 9Katsov Y. Tensor products and injective envelopes of semi- modules over additively regular semirings [ J ]. Algebra Colloquium, 1997,4 ( 2 ) : 121-131.
  • 10Bhambri S K,Dubey M K. Extensions of semimodules and injective semimodules [ J ]. Southeast Asian Bull Math, 2010,34( 1 ) :25-41.

二级参考文献26

  • 1丰建文,黄福生,石定琴.可补半环[J].江西科学,2005,23(3):207-209. 被引量:7
  • 2Al-Thani H M J. K-projective semimodules[J]. Kobe J Math,1996,13( 1 ):49-59.
  • 3Golan J S. Semirings and their applications [ M ]. New York : Kluwer Academic Publishers, 1999.
  • 4Wang H X. Injective hulls of semimodules over additively-idempotent semirings [ J ]. Semigroup Forum, 1994,48:373-379.
  • 5Hall M, Pianskool S. Injectivity for cancellative semimodules [ J ]. Thailand: SEA Bull Math, 1996,20 (4) : 85-93.
  • 6Ahsan J, Shabir M, Weinert H J. Characterizations of semirings by P-injective and projective semimodules [ J ]. Comm in Alge , 1998,26(7 ) :2199-2209.
  • 7Takahashi M, Wang H. Injective semimodules over a 2 -semiring [ J ]. Kobe J Math, 1993,10 : 59 -70.
  • 8Katsov Y. Tensor products and injective envelopes of semimodules over additively regular semirings [ J ]. Alge Colloquium, 1997,2 (4) :121-131.
  • 9Al-Thsni H M J. A note on projective semimodules[ J]. Kobe J Math,1995,12( 1 ) :89-94.
  • 10[1]Golan J S. The theory of semirings with applications in mathematics and theoretical computer science[M]. Exxes, England: longman scientific & techcical, 1999.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部