摘要
利用亚纯函数值分布理论,研究了亚纯系数高阶线性微分方程f(k)+Ak-1(z)f(k-1)+…+A0(z)f=0解的增长性,证明了如果A0(z)以∞为亏值,Aj(z)(1≤j≤k-1)满足某些条件,则上述方程的每个非零亚纯解都为无穷级,得到解的超级的下界估计.
The growth of solutions of higher order linear differential equations f( k)+ Ak- 1( z) f( k- 1)+ … + A0( z) f = 0is investigated by using the value distributions theory of meromorphic functions,where Aj( z)( 0≤j≤k- 1) are meromorphic functions. It is shown that every nonzero meromorphic solution of such equations has infinite order,provided that A0( z) has a deficient value ∞ and Aj( z)( 1≤j≤k- 1) satisfying certain conditions. The lower bound of hyper order of meromorphic solutions of such equations is also estimated.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2016年第3期272-275,共4页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
国家自然科学基金(11201195)
江西省自然科学基金(20122BAB201012)资助项目
关键词
微分方程
亚纯函数
亏值
级
超级
differential equation
meromorphic functions
deficient value
order
hyper order