期刊文献+

苹果MdDRB1的表达与功能分析 被引量:4

Expression and Function Analysis of Apple MdDRB1 Gene
原文传递
导出
摘要 以‘嘎拉’苹果(Malus×domestica‘Royal Gala’)为试材,扩增Md DRB1基因,分析其序列结构,同时原核诱导Md DRB1蛋白并观察其亚细胞定位。利用q RT-PCR检测Md DRB1在非生物胁迫下的表达量,通过遗传转化苹果苗鉴定Md DRB1在非生物胁迫中的功能。基因结构分析显示,Md DRB1具有2个内含子和3个外显子。亚细胞定位显示,Md DRB1主要定位于细胞核,少数定位在细胞质。原核诱导结果显示,Md DRB1融合蛋白以包涵体的形式存在。同时发现Md DRB1反义转基因愈伤中与抗性相关的mi RNA的表达水平上调。在PEG、ABA、盐和低温处理的材料中Md DRB1的表达水平明显上调。另外,Md DRB1过量表达明显提高了转基因苹果组培苗的抗性。推测Md DRB1在抗逆胁迫响应中有重要作用。 A gene named MdDRB1 cloned from Malus × domestica‘Royal Gala'was analyzed. To understand sequence characteristics of the gene,prokaryotic expression and subcellular localization were carried out. In addition,real-time quantitative PCR were performed to determine the expression levels of MdDRB1 in response to various abiotic stresses. Finally,MdDRB1 was genetically transformed into apple seedlings to identify its function. The analysis of gene structure revealed that there were two introns and three exons in genomic sequence of MdDRB1. Subcellular localization showed that MdDRB1 were mainly distributed in the nucleus,a small number distributed in the cytoplasm. Then,the induced protein showed that MdDRB1 fusion protein existed in the form of inclusion body. Furthermore,the mi RNA related to resistance expression level raised in antisense transgenic apple callus. In addition,real-time quantitative PCR found that the MdDRB1 gene expression level significantly raised after treated with PEG,Na Cl,ABA and 4 ℃. Overexpression of MdDRB1 remarkably increased the tolerance of transgenic apple seedlings to abiotic stresses. These results indicated that MdDRB1 might be involved in the response of apple to abiotic stresses.
出处 《园艺学报》 CAS CSCD 北大核心 2016年第6期1033-1043,共11页 Acta Horticulturae Sinica
基金 国家自然科学基金项目(31171946) 农业部‘948’重点项目子课题(2011-G21)
关键词 苹果 MdDRB1 原核表达 亚细胞定位 逆境响应 apple MdDRB1 prokaryotic expression subcellular localization stress esponse
  • 相关文献

参考文献49

  • 1Bandziulius R J, Swanson M S, Dreyfuss G. 1989. RNA-binding proteins as developmental regulators. Genes Dev, 3 (4): 431 - 437.
  • 2Bartel B, Bartel D P. 2003. MicroRNAs: at the root of plant development? Plant Physiology, 132 (2): 709 - 717.
  • 3Bartel D P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116 (2): 281 - 297.
  • 4Chen C, Ridzon D A, Broomer A J, Zhou Z, Lee D H, Nguyen J T, B arbisin M, Xu N L, Mahuvakar V R, Andersen M R, Lao K Q, Livak K J, Guegler K J. 2005. Real-time quantification of microRNAs by stem-loop-RT-PCR. Nucleic Acids Res, 33 (20): e179.
  • 5Chuck G, Candela H, Hake S. 2009. Big impacts by small RNAs in plant development. Current Opinion in Plant Biology, 12 (1): 81 - 86.
  • 6Curtin S J, Watson J M, Smith N A, Eamens A L, Blanchard C L, Waterhouse P M. 2008. The roles of plant dsRNA-binding proteins in RNAi-likepathways. FEBS Letters, 582 (18): 2753 - 2760.
  • 7Curtis D, Lehmann R, Zamore P D. 1995. Translational regulation in development. Cell, 81 (2): 171 - 178.
  • 8Dang C V, Lee W M. 1989. Nuclear and nucleolar targeting sequences ofc-erb-A, c-yb, N-myc, p53, HSP70, and HIV tat proteins. Journal of Biological Chemistry, 264 (30): 18019 - 18023.
  • 9Dong Z, Han M H, FedoroffN. 2008. The RNA-binding proteins HYLI and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proceedings of the National Academy of Sciences, 105 (29): 9970 - 9975.
  • 10Eamens A L, Kim K W, Curtin S J, Waterhouse P M. 2012. DRB2 is required for microRNA biogenesis in Arabidopsis thaliana. PLoS ONE, 7940: e35933.

二级参考文献8

共引文献17

同被引文献17

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部