期刊文献+

基于比例策略的多目标PSO的感应电机参数辨识

Study of IM Parameter Identification Using Multi-objective Particle Swarm Optimization with Proportional Guided Strategy
下载PDF
导出
摘要 建立了感应电机多参数多目标辨识模型,提出了一种基于Pareto最优集和比例策略个体最优项的多目标粒子群算法对感应电机参数进行辨识。Pareto最优集不需要考虑各个目标的加权系数,避免了感应电机辨识目标系数选择的主观性,比例策略能更好地平衡从个体最优和全局最优学习经验的能力。通过在Matlab/Simulink中进行验证,结果证明该算法能提高感应电机参数的辨识精度,具有更好的性能。 A multi-parameter and multi-objective identification model of induction motor was established, and a multi-objective particle swarm optimization based on Pareto set and all personal-best positions guided strategy was proposed and applied to the identification model. Not considerring the weighted coefficient of each objective, Pareto set is able to avoid subjective choice of the coefficients of multi-objective identification and proportion strategy with all personal-best positions guided could balance the learning ability from personal-best positions and global-best position. Having verified the performance on Matlab/Simulink, the results show that the proposed algorithm is able to improve parameter identification accuracy, and has a better performance.
出处 《系统仿真学报》 CAS CSCD 北大核心 2016年第7期1489-1496,共8页 Journal of System Simulation
基金 国家自然科学基金(61572238) 国家高技术研究发展计划(2014AA041505) 江苏省杰出青年基金(BK20160001)
关键词 粒子群算法 个体最优项 感应电机 参数辨识 PARETO最优集 particle swarm optimization personal-best induction motor parameter identification Pareto set
  • 相关文献

参考文献18

二级参考文献76

  • 1高扬,杨明,于泳,徐殿国.基于扰动观测器的PMSM交流伺服系统低速控制[J].中国电机工程学报,2005,25(22):125-129. 被引量:43
  • 2黄志武,桂卫华,单勇腾,年晓红,刘心昊,李艺.一种新型的基于自适应磁链观测器的速度辨识[J].系统仿真学报,2007,19(4):825-829. 被引量:10
  • 3黄志武,单勇腾,年晓红,刘心昊,李艺.基于自适应观测器的感应电机无速度传感器DTC系统的仿真[J].电气传动,2007,37(4):16-20. 被引量:10
  • 4Green T C. Scalar Controlled Induction Motor Drives [D]. UK: Hefiot-Watt University, 1990.
  • 5Theocharis K Boukas, Thomas G Habetler. High-Performance Induction Motor Speed Control Using Exact Feedback Linearization with State and State Derivative Feedback [J]. IEEE Transactions on Power Electronics (S0885-8993), 2004, 19(4): 1022-1028.
  • 6Furtunato A F A, Salazar A O, Dantas de Araujo A. Robust Control for Induction Motor using a Variable Structure Model Reference Adaptive Control [J]. IEEE Power Electronics Congress ($7803-5006), 1998, CIEP98(1): 61-69.
  • 7Miloudi A, Miloud Y, Draou A. A neural Network Based Speed Control Design Strategy of an Indirect Vector Controlled Induction Machine Drive [C]// IEEE Bologna PowerTech Conference ($7803-7967), Bologna, Italy, 2003. USA: IEEE, 2003.
  • 8Uddin M N, Radwan T S, Rahman M A. Performances of Fuzzy- Logic-Based Indirect Vector Control for Induction Motor Drive [J]. IEEE Transactions on Industry Applications (S0093-9994), 2002, 38(5): 1219-1225.
  • 9Utkin V I. Sliding Mode Control Design Principles and Applications to Electric Drives [J]. IEEE Trans. Industrial Electronics (S0278- 0046), 1993, 40(1): 23-26.
  • 10Maaziz M K, Mendes E, P Boucher. A New Nonlinear Multivariable Control Strategy of Induction Motors [J]. Control Engineering Practice (S0967-0661), 2002, 10(6): 605-613.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部