期刊文献+

ZnO和CuO混合纳米颗粒在添加FCC粗颗粒的流态化及聚团碰撞与破碎过程研究 被引量:2

Research on the Agglomeration Collision and Fragmentation Process in a Fluidized Bed of ZnO and CuO Composite Nanoparticles Added with FCC Coarse Particles
下载PDF
导出
摘要 研究混合纳米Zn O和Cu O颗粒添加3种不同粒径FCC粗颗粒(催化裂化催化剂)的流化行为,用高速摄像机观察流化现象并对聚团碰撞与破碎过程、聚团成分进行分析。结果表明,添加FCC粗颗粒可显著改善纳米颗粒的流化性能,FCC3对纳米颗粒流化性能的改善效果比FCC1或FCC2更明显;且随着FCC粗颗粒添加量的增加,纳米颗粒流化行为的改善效果越好,体系的混合均匀程度是影响混合纳米Zn O和Cu O流化性能的重要因素。 A research has been conducted on the fluidization behaviors of Zn O and Cu O composite nanoparticles,added with FCC coarse particles of three different particle sizes(catalytic cracking catalysts). An observation of the whole fluidization process, with the aid of a high-speed camera, has been made for a detailed analysis of the agglomeration collision and fragmentation, and agglomeration components as well. The results show that the fluidization performance of the composite nanoparticles can be improved significantly with the addition of FCC coarse particles. Moreover, compared with the other two kinds of coarse particles FCC2 or FCC1, a more significant effect can be achieved with the addition of FCC3 in the process. With the increase of the addition amount of FCC coarse particles, the improvement of the fluidization performance of the composite nanoparticles becomes more obvious. Thus, it can be concluded that the mixing uniformity of nanoparticles is an important factor that influence the fluidization performance of Zn O and Cu O composite nanoparticles.
出处 《湖南工业大学学报》 2016年第3期63-70,共8页 Journal of Hunan University of Technology
基金 国家自然科学基金资助项目(21376269)
关键词 纳米颗粒 粗颗粒 流态化 聚团 团聚与破碎 nanoparticles coarse particles fluidization agglomeration agglomeration fragmentation
  • 相关文献

参考文献3

二级参考文献56

  • 1Ping Zeng,Yao Zhou,Guanqun Chen,Qingshan Zhu.Behavior of mixed ZnO and SiO_2 nano-particles in magnetic field assisted fluidization[J].China Particuology,2007,5(1):169-173. 被引量:4
  • 2余尚银.材料物理化学[M].西安:西安交通大学出版社,1995.3.
  • 3住友化学工业株式会社.用于抛光半导体基材上的金属层的磨料组合物及其用途[P].CN971 17913.1.1998-04-29.
  • 4ZHOU T, LI H Z. Estimation of agglomerate size of cohesive particles during fluidization [J]. Powder Technol, 1999, 101(1): 57-62.
  • 5YU Q, DAVE R, ZHU C. Enhanced fluidization of nanoparticles in an oscillating magnetic field [J]. AIChE J, 2005, 51(7): 1971-1979.
  • 6HAKIM L, PORTMAN J, CSAPER M, WEIMER A. Aggregation behavior of nanoparticles in fluidized beds [J]. Powder Technol, 2005, 160(3): 149-160.
  • 7LI H Z, TONG H. Multi-scale fluidization of ultrafine powders in a fast-bed-riser/eonical-dipleg CFB loop [J]. Chem Eng Sci, 2004, 59(8/9): 1897-1904.
  • 8HRISTOV J Y. Magnetic field assisted fluidization--A unified approach: Part 5. A hydrodynamic treatise on liquid-solid fluidized beds [J]. Review of Chem Eng, 2006, 22(4/5): 195-377.
  • 9WANG X S, RAHMAN F, RHODES M J. Nanoparticle fluidization and Geldart's classification [J]. Chem Eng Sci, 2007, 62(13): 3455-3461.
  • 10ZHU Q S, LI H Z. Study on magnetic fluidization of group C powders [J]. Powder Technol, 1996, 86(2): 179-185.

共引文献15

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部