摘要
应用正交变换将对称矩阵对角化,基于随机向量正交变换后独立性的不变性及矩阵迹相关性质,给出一个关于对称矩阵经随机变换后方差的证明,并将该结论推广到更一般情形。
Based on the Theorem in a reference book, a symmetric matrix is diagonalized by orthogonal transformation first. Because of the invariance property of independence when a random variable is transformed through orthogonal mean,a proof for variance of random variable after stochastic transformation of symmetric matrix is presented by applying the property of trace of matrix. Secondly,a general conclusion for the theorem is studied.
出处
《高等数学研究》
2016年第1期90-91,94,共3页
Studies in College Mathematics
基金
安徽工业大学教学研究项目(2015jy44
2014jy33)
安徽省教学研究项目(2014zy023
2015jyxm110)
关键词
方差
正交变换
对称矩阵
随机向量
矩阵的迹
variance
orthogonal transformation
symmetric matrix
random vector
trace of matrix