期刊文献+

第一类导数非线性薛定谔方程的数值模拟 被引量:6

Numerical simulation for the first type derivative nonlinear Schrdinger equation
下载PDF
导出
摘要 利用Taylor级数展开,给出了求解第一类导数非线性薛定谔方程的CrankNicolson格式。使用该格式对该方程进行数值模拟,数值算例验证了该格式具有保持时空2阶精度的性质。最后在初值上添加微小随机扰动,观察孤子解随时间的变化情况,结果显示孤子解在初值添加微小随机扰动后变化不大,说明孤子解具有很好的稳定性。 The Crank-Nicolson scheme for the first type derivative nonlinear Schrdinger equation is given by using the Taylor series expansion method. Then the equation is solved by using the CrankNicolson scheme and the numerical experiments verify that the Crank-Nicolson scheme has the property of keeping second order accuracy in time and space. In the end,the behavior of soliton solution is observed by adding a small perturbation to the initial value. As a result,the soliton solution changes little when small perturbation is added to the initial value,which proves high stability of soliton solution.
出处 《北京信息科技大学学报(自然科学版)》 2016年第3期84-87,91,共5页 Journal of Beijing Information Science and Technology University
关键词 导数非线性薛定谔方程 孤子解 CRANK-NICOLSON格式 随机扰动 derivative nonlinear Schrdinger equation soliton solution Crank-Nicolson scheme random perturbation
  • 相关文献

参考文献12

  • 1Chen H H,Lee Y C, Liu C S. Integrability of nonlinear Hamihonian systems by inverse scattering method [ J]. Physica Scripta, 1979, 20(3 -4) : 490 -492.
  • 2Guo Boling, Ling Liming, Liu Q P. High- order solutions and generalized Darboux transformations of derivative nonlinear Schr6dinger equations [ J]. Studies in Applied Mathematics, 2013, 130(4) : 317 -344.
  • 3Liu Ya-Xian, Yang Bai-Feng, Cai Hao. Soliton solutions of DNLS equation found by IST anew and its verification in Marchenko formalism [ J ]. International Journal of Theoretical Physics, 2006, 45 (10) : 1836 - 1845.
  • 4Kaup David J, Newell Alan C. An exact solution for a derivative nonlinear Schrdinger equation [ J ]. Journal of Mathematical Physics, 1978, 19(4): 798-801.
  • 5Zhou Guo-Quan, Huang Nian-Ning. An N- soliton solution to the DNLS equation based on revised inverse scattering transform [ J ]. Journal of Physics: A Mathematical and Theoretical, 2007, 40 (45) : 13607 - 13623.
  • 6ZHOU Guoquan,BI Xintao.Soliton Solution of the DNLS Equation Based on Hirota's Bilinear Derivative Transform[J].Wuhan University Journal of Natural Sciences,2009,14(6):505-510. 被引量:11
  • 7Wang Lei, Li Min, Qi Feng-Hua, et al. Breather interactions, higher-order rogue waves and nonlinear tunneling for a derivative nonlinear Schrodinger equation inhomogeneous nonlinear optics and plasmas [ J ]. The European Physical Journal. D, 2015, 69(4) : 108.
  • 8Priya N Vishnu, Senthilvelan M. Generalized Darboux transformation and Nth order rogue wave solution of a general coupled nonlinear Schrodinger equations [ J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 20(2): 401 -420.
  • 9Meng Gao-Qing, Gao Yi-Tian, Yu Xin, et al. Muhi-soliton solutions for the coupled nonlinear Schrodinger-type equations [ J ]. Nonlinear Dynamics, 2012, 70 : 609 - 617.
  • 10Hua Dong-Ying, Li Xiang-Gui. The finite element method for computing the ground states of the dipolar Bose - Einstein condensates [J]. Applied Mathematics and Computation, 2014,234 : 214 - 222.

二级参考文献55

  • 1Griffiths D J. Introduction to Quantum Mechanics. Englewood Cliffs, N J: Prentice-Hall, 1995.
  • 2Menyuk C R. Stability of solitons in birefringent optical fibers. J Opt Soc Amer B Opt Phys, 1998, 5:392-402.
  • 3Wadati M, Izuka T, Hisakado M. A coupled nonlinear Schrodinger equation and optical solitons. J Phys Soc Japan, 1992, 61:2241-2245.
  • 4Akrivis G D. Finite difference discretization of the cubic SchrSdinger equation. IMA J Numer Anal, 1993, 13:115-124.
  • 5Chan T, Shen L. Stability analysis of difference schemes for variable coefficient SchrSdinger type equations. SIAM J Numer Anal, 1987, 24:336-349.
  • 6Chang Q, Jia E, Sun W. Difference schemes for solving the generalized nonlinear SchrSdinger equation. J Comput Phys, 1999, 148:397-415.
  • 7Dai W. An unconditionally stable three-level explicit difference scheme for the Schr6dinger equation with a variable coefficient. SIAM J Numer Anal, 1992, 29:174-181.
  • 8Dehghan M, Taleei A. A compact split-step finite difference method dor solving the nonlinear SchrSdinger equations with constant and variable coefficients. Comput Phys Comm, 2010, 181:43-51.
  • 9Ivanauskas F, Radzifinas M. On convergence and stability of the explicit difference method for solution of nonlinear SchrSdinger equations. SIAM J Numer Anal, 1999, 36:1466-1481.
  • 10Nash P L, Chen L Y. Efficient difference solutions to the time-dependent SchrSdinger equation. J Comput Phys, 1997, 130:266-268.

共引文献21

同被引文献16

  • 1卢学飞,徐仲.求解块三对角方程组的新算法[J].数学的实践与认识,2007,37(3):112-118. 被引量:1
  • 2李祥贵,陈光南.数学物理方程数值方法[M].北京:世界图书出版公司,2015:333-334.
  • 3Bao Weizhu,Tang Qinglin,Xu Zhiguo.Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrdinger equation[J].Journal of Computational Physics,2013,235:423-445.
  • 4Wen Xiaoyong,Yang Yunqing,Yan Zhenya.Generalized perturbation(n,M)-fold Darbouxtrans formations and multi-rougue-wave structures for the modified self-steepening nonlinear Schrdinger equation[J].Phys Rev E,2015,92(1):012917.
  • 5Priya N V,Senthilvelan M,Lakshmanan M.Dark solitons,breathers,and rogue wave solutions of the coupled generalized nonlinear Schrdinger equations[J].Phys Rev E,2014,89(6):062901.
  • 6Nakatsuka H,Grischkowsky D,Balant A C.Nonlinear picosecond-pulse progation through optical fibers with positive group velocity dispersion[J].Phys Rev Lett,1981,47:910-913.
  • 7Mio K,Ogino T,Minami K,et al.Modified nonlinear Schrdinger equation for Alfvénwaves propagating along the magnetic field in cold plasmas[J].JPhys Soc Jpn,1976,41:265-271.
  • 8Stiassnie Michael.Note on the modified nonlinear Schrodinger equation for deep water waves[J].Wave Motion,1984,6:434-433.
  • 9Hua Dong Ying,Li Xiang Gui.The finite element method for computing the ground states of the dipolar Bose-Einstein condensates[J].Applied Mathematics and Computation,2014,234:214-222.
  • 10胡伟鹏,邓子辰.Multi-symplectic method for generalized fifth-order KdV equation[J].Chinese Physics B,2008,17(11):3923-3929. 被引量:6

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部