摘要
利用Taylor级数展开,给出了求解第一类导数非线性薛定谔方程的CrankNicolson格式。使用该格式对该方程进行数值模拟,数值算例验证了该格式具有保持时空2阶精度的性质。最后在初值上添加微小随机扰动,观察孤子解随时间的变化情况,结果显示孤子解在初值添加微小随机扰动后变化不大,说明孤子解具有很好的稳定性。
The Crank-Nicolson scheme for the first type derivative nonlinear Schrdinger equation is given by using the Taylor series expansion method. Then the equation is solved by using the CrankNicolson scheme and the numerical experiments verify that the Crank-Nicolson scheme has the property of keeping second order accuracy in time and space. In the end,the behavior of soliton solution is observed by adding a small perturbation to the initial value. As a result,the soliton solution changes little when small perturbation is added to the initial value,which proves high stability of soliton solution.
出处
《北京信息科技大学学报(自然科学版)》
2016年第3期84-87,91,共5页
Journal of Beijing Information Science and Technology University