期刊文献+

非正规循环子群的正规化子皆极大的有限半单群

Finite semi-simple groups in which normalizer of every non-normal cyclic subgroup is maximal
下载PDF
导出
摘要 研究了满足非正规循环子群的正规化子皆极大的有限半单群,并给出了这类群的结构. In this paper,the classification is given for finite semi-simple groups in which the normalizer of every non-normal cyclic subgroup is a maximal subgroup.
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2016年第2期238-244,共7页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(11371237)
关键词 正规化子 循环子群 极大子群 normalizer cyclic subgroup maximal subgroup
  • 相关文献

参考文献13

  • 1Bianchi M, Mauri A G B, Hauck P. On finite groups with nilpotent Sylow-normalizers [J]. Archiv der Mathematik, 1986, 47(3): 193-197.
  • 2Ballester-Bolinches A, Shemetkov L A. On normalizers of Sylow subgroups in finite groups [J]. Siberian Mathematical Journal, 1999, 40(1): 1-2.
  • 3Zhang J P. Sylow numbers of finite groups [J]. J Algebra, 1995, 176: 111-123.
  • 4Zhang X H, Guo X Y. Finite p-groups whose non-normal cyclic subgroups have small index in their nomalizers [J]. Journal of Group Theory, 2012, 15(5): 641-649.
  • 5李璇,郭秀云.非极大交换子群皆正规的有限群[J].应用数学与计算数学学报,2012,26(1):121-126. 被引量:7
  • 6Cao J J, Guo X Y. Finite soluble groups in which the normalizer of every non-normal cyclic subgroup is maximal [J]. Journal of Group Theory, 2014, 17(4): 671-687.
  • 7Suzuki M. Finite groups with nilpotent centralizers [J]. Trans Amer Math Soc, 1961, 99: 425- 470.
  • 8Suzuki M. On a class of doubly transitive groups: II [J]. Annals of Mathematics, 1962, 79(3): 514-589.
  • 9Arad Z, Chillag D, Herzog M. Classification of finite groups by a maximal subgroup [J]. J Algebra, 1981, 71: 235-244.
  • 10Giudici M. Maximal subgroups of almost simple groups with socle PSL(2,q) [J/OL]. (2007-03- 23)[2014-02-10]. http://arxiv.org/pdf/math/0703685.pdf.

二级参考文献4

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部