期刊文献+

基于非负矩阵分解的房地产评估模型

Assessment model of real estate appraisal based on non-negative matrix factorization
下载PDF
导出
摘要 在房地产评估的基本方法——市场比较法中,所需统计经济指标较多且部分指标并不是消费者需求的普遍反映,该方法的使用与结果存在局限性.由于非负矩阵分解算法在对数据进行特征提取方面有较出色的表现,因此,文章首次将非负矩阵分解应用于房地产评估的数据处理中.根据分解结果,提取对房地产价值影响较大的几个指标因素进行归类,据此建立了新的市场比较法.经检验,其评估结果与实际市场成交价格接近,且新方法更简便易行. The market comparison approach is a basic way of real estate appraisal.However,in this method,a lot of statistical indicators are needed,and some of them do not well reflect the consumers' demands.Therefore,this method has limitations.Considering the outstanding performance of non-negative matrix factorization algorithm in data feature extraction,the authors would like to apply it to data processing of real estate appraisal.According to the results of decomposition,several factors which influence the value of real estate to a large extent are extracted and classified,then a new market comparison method is established.The empirical analysis demonstrates that the assessment price of the new method is close to the transaction price,which indicates that the new method is more feasible.
作者 高树南 林鹭
出处 《应用数学与计算数学学报》 2016年第2期280-289,共10页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(11371075) 中央高校基本业务费基金资助项目(20720150004)
关键词 房地产评估 市场比较法 非负矩阵分解 real estate appraisal market comparison approach non-negative matrix factorization
  • 相关文献

参考文献15

  • 1Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization [J]. Nature, 1999, 401(6755): 788-791.
  • 2Lee D D, Seung H S. Algorithms for non-negative matrix factorization [C]//Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2001, 42: 556-562.
  • 3Chu M, Plemmons R. Nonnegative matrix factorization and applications [J]. Image, 2005, 34: 1-5.
  • 4Padilla P, Lopez M, Gorriz J M, Ramfrez J, Salas-Gonzalez D, 2{lvarez I. NMF-SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer's disease [J]. IEEE Transactions on Medical Imaging, 2012, 31(2): 207-216.
  • 5Lin L. Alternative gradient algorithms with applications to nonnegative matrix factorizations [J]. Applied Mathematics and Computation, 2010, 216(6): 1763-1770.
  • 6Shahnaz F, Berry M W, Pauca V P, Plemmons R J. Document clustering using nonnegative matrix factorization [J]. Information Processing and Management, 2006, 42(2): 373-386.
  • 7Pauca V P, Piper J, Plemmons R J. Nonnegative matrix factorization for spectral data analysis [J]. Linear Algebra and Its Applications, 2006, 416(1): 29-47.
  • 8Anderson A, Douglas P K, Kerr W T, Haynes V S, Yuille A L, Xie J, Wu Y N, Brown J A, Cohen M S. Non-negative matrix fartorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD [J]. Neuroimage, 2014, 102: 207-219.
  • 9Brunet J P, Tamayo P, Golub T R, Mesirov J P. Metagenes and molecular pattern discovery using matrix factorization [J]. Proc Natl Acad Sci U S A, 2004, 101(12): 4164-4169.
  • 10曹胜玉,刘来福.非负矩阵分解及其在基因表达数据分析中的应用[J].北京师范大学学报(自然科学版),2007,43(1):30-33. 被引量:13

二级参考文献79

  • 1冯利华,马未宇.主成分分析法在地区综合实力评价中的应用[J].地理与地理信息科学,2004,20(6):73-75. 被引量:36
  • 2陈安明.基于主成分分析的住宅项目特征定价模型[J].重庆大学学报(自然科学版),2006,29(6):144-148. 被引量:20
  • 3云虹.主成分分析法在承诺评价模型中的应用[J].管理学报,2006,3(5):538-542. 被引量:12
  • 4[3]Halstead J M,Bouvier R A,Hansen B.On the issue of functional form choice in hedonic price functions:further evidence[J].Enviromental Managment,1997,21(5):759-765.
  • 5[4]Mok M K,Chan P K,Cho S.A hedonic price model for private properties in Hong Kong[J].Jourmal of Real Estate Finance and Economics,1995,10(1):37-48.
  • 6Yeung M K, Tegner J, Collins J J. Reverse Engineering Gene Networks Using Singular Value Decomposition and Robust Regression[J]. Proceedings of the National Academy of Sciences, 2002,99(9) : 6163-6168.
  • 7Yeung K Y, Ruzzo W L. Principal Component Analysis for Clustering Gene Expression Data [J]. Bioinformatics, 2001, 17(9):763-774.
  • 8Liebermeister W, IAnear Modes of Gene Expression Determined by Independent Component Analysis[J]. Bioinformatics, 2002,18(1) : 51-60.
  • 9Liao J C, Boscolo R, Yang Y L, et al. Network Component Analysis: Reconstruction of Regulatory Signals in Biological Systems[J]. Proceedings of the National Academy of Sciences, 2003,100(26) : 15522-15527.
  • 10Lee D D,Seung H S. Learning the Parts of Objects by Nonnegative Matrix Factorization[J]. Nature, 1999,401 (6755) : 788-791.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部