期刊文献+

心血管疾病的基因治疗 被引量:3

Gene therapy for cardiovascular disease
下载PDF
导出
摘要 基因治疗在先天遗传性以及后天获得性心血管疾病治疗中均具有广阔的发展前景.对心血管疾病致病机理的深入认识和疾病基因组学研究的发展,进一步促进了临床前基因治疗的研究进展.但基因治疗过程中存在的机体细胞免疫反应、外源基因表达水平不足、在体基因转导效率低下等因素都成为基因治疗临床应用转化的瓶颈.近年来,基因导入载体和基因组编辑技术的发展为上述问题的改善和解决提供了新的思路.目前成族规律间隔短回文重复序列(clustered regularly interspaced short palindromic repeats,CRISPR)/Cas9基因组编辑技术已经成功应用于动物模型的在体基因编辑,达到了显著改善血脂指标的疗效.进一步研究体内组织特异和高效的基因导入方式,提高基因编辑的靶向效率和特异性,并建立全面有效的安全评估实验体系,将推动基因治疗向临床应用的转化.针对心血管疾病基因治疗中基因导入载体的研究以及CRISPR/Cas9基因组编辑技术的应用展开讨论. Gene therapy shows great promise in the treatment of both inherited and acquired cardiovascular diseases. Identification of key molecule players in pathophysiology of cardiovascular disease and development of human disease genomic research lead to encouraging preclinical gene therapy studies in animal models. However, the presence of cellular immune responses, insufficient gene expression level and overall limited in vivo gene transduction efficiencies have hampered the translational progress to clinical use of gene therapy. In recent years, improvements in gene delivery system and discovery of advanced genome editing technologies open new therapeutic perspectives, with clustered regularly interspaced short palindromic repeats (CRISRP)/Cas9 genome editing technology already being successfully used in animal models to treat hypercholesterolemia. Further improvement in gene delivery efficiency, increase in targeting specificity of genome editing tools, and establishment of experimental systems for a thorough analysis of potential safety prob- lems would help eventually bring gene therapy recent advances in the use of different delivery for heart disease to reality. In this review, vectors and CRISPR/Cas9 genome editing technology in gene therapy research to treat cardiovascular diseases are discussed.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第3期270-279,共10页 Journal of Shanghai University:Natural Science Edition
基金 上海市浦江人才计划资助项目(15PJ1409200)
关键词 心血管疾病 基因治疗 基因导入载体 CRISPR/Cas9基因组编辑技术 cardiovascular disease gene therapy gene delivery vector CRISPR/Cas9 genome editing technology
  • 相关文献

参考文献59

  • 1Mozaffarian D, Benjamin E J, Go A S, et al. Heart disease and stroke statistics—2016 update a report from the American Heart Association [J]. Circulation, 2016, 133(4): 447-545.
  • 2Gheorghiade M, Pang P S. Acute heart failure syndromes [J]. J Am Coll Cardiol, 2009, 53(7): 557-573.
  • 3Tilemann L, Ishikawa K, Weber T, et al. Gene therapy for heart failure [J]. Circ Res, 2012, 110(5): 777-793.
  • 4Yerevanian A, Yerevanian A, Hajjar R J. Progress in gene therapy for heart failure [J]. J Cardiovasc Pharm, 2014, 63(2): 95-106.
  • 5Gao M H, Lai N C, Miyanohara A, et al. Intravenous adeno-associated virus serotype 8 encoding urocortin-2 provides sustained augmentation of left ventricular function in mice [J].Hum Gene Ther, 2013, 24(9): 777-785.
  • 6Lai N C, Tang T, Gao M H, et al. Improved function of the failing rat heart by regulated expression of insulin-like growth factor Ⅰvia intramuscular gene transfer [J]. Hum Gene Ther,2012, 23(3): 255-261.
  • 7Ding Q R, Strong A, Patel K M, et al. Permanent alteration of PCSK9 with in vivo CRISPRCas9 genome editing [J]. Circ Res, 2014, 115(5): 488-492.
  • 8Su C H, Wu Y J, Wang H H, et al. Nonviral gene therapy targeting cardiovascular system [J]. Am J Physiol Heart C, 2012, 303(6): H629-H638.
  • 9Gyongyosi M, Khorsand A, Zamini S, et al. NOGA-guided analysis of regional myocardial perfusion abnormalities treated with intramyocardial injections of plasmid encoding vascular endothelial growth factor A-165 in patients with chronic myocardial ischemia—subanalysis of the EUROINJECT-ONE multicenter double-blind randomized study [J]. Circulation, 2005, 112(9): 1157-1165.
  • 10Scimia M C, Cannavo A, KochWJ. Gene therapy for heart disease: molecular targets, vectors and modes of delivery to myocardium [J]. Expert Rev Cardiovasc Ther, 2013, 11(8): 999-1013.

二级参考文献49

  • 1Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med , 2015, 372: 793-795.
  • 2Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet , 2010, 11(9): 636-646.
  • 3Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science , 2009, 326(5959): 1501.
  • 4Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science , 2009, 326(5959): 1509-1512.
  • 5Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics , 2010, 186(2): 757-761.
  • 6Miller JC, Tan SY, Qiao GJ, Barlow KA, Wang JB, Xia DF, Meng XD, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol , 2010, 29(2): 143-148.
  • 7Zhang F, Cong L, Lodato S, Kosuri SK, Church GM, Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol , 2010, 29(2): 149-153.
  • 8Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science , 2013, 339(6121): 819-823.
  • 9Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science , 2013, 339(6121): 823-826.
  • 10Jinek M, East A, Cheng A, Lin S, Ma EB, Doudna J. RNA-programmed genome editing in human cells. eLife , 2013, 2, e00471.

共引文献4

同被引文献27

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部