期刊文献+

一个半离散非齐次核Hardy-Hilbert型不等式的加强 被引量:1

A Strengthened Version of a Half-Discrete Hardy-Hilbert-Type Inequality with a Non-Homogeneous Kernel
下载PDF
导出
摘要 引入独立参数,应用权函数的方法及Hermite-Hadamard不等式,建立一个具有最佳常数因子的加强的半离散非齐次核Hardy-Hilbert型不等式,还考虑了其等价式. By applying the way of weight functions and Hermite-Hadamard 's inequality,a strengthened version of a half-discrete Hardy-Hilbert-type inequality with a non-homogeneous kernel and a best possible constant factor is provided. Furthermore,the strengthened equivalent forms are considered.
出处 《广东第二师范学院学报》 2016年第3期8-12,共5页 Journal of Guangdong University of Education
基金 国家自然科学基金资助项目(61370186)
关键词 HARDY-HILBERT型不等式 参数 权函数 等价式 加强 Hardy-Hilbert-type inequality parameter weight function equivalent form strengthened version
  • 相关文献

参考文献10

  • 1HARDY G H. Note on a theorem of Hilbert concerning series of positive terms [J]. Proceedings Lon- :Ion Math Soc, 1925, 23(2) : Records of Proc. xlv-xlvi.
  • 2HARDY G H, LITTLEWOOD J E, POLYA G. Inequalities [M]. Cambridge: Cambridge Univ Press, 1952.
  • 3YANG Bi-cheng. On best extensions of Hardy-Hilbert's inequality with two parameters[J].Journal of Inequalities in Pure and Applied Mathematics, 2005, 6(3). Article 81.
  • 4王竹溪 郭敦仁.特殊函数论[M].北京:科学出版社,1979..
  • 5YANG Bi-cheng. Discrete Hilbert-type inequalities [M]. Sharjah,The United Arab Emirates:Bentham Science Publishers Ltd, 2011.
  • 6杨必成.一个推广的Hardy-Hilbert型不等式[J].广东第二师范学院学报,2015,35(3):1-7. 被引量:7
  • 7杨必成,陈强.一个含对数核半离散的Hilbert型不等式[J].上海大学学报(自然科学版),2014,20(6):726-732. 被引量:2
  • 8HUANG Qi-liang, WANG Ai-zhen, YANG Bi-cheng. A more accurate half-discrete Hilbert-type ine- quality with a general non-homogeneous kernel and operator expressions [J]. Mathematical Inequali- ties and Applications, 2014,17(1) ..367-388.
  • 9WANG Ai-zhen, YANG Bi-cheng. A more accurate reverse half-discrete Hilbert-type Inequality[J]. Journal of Inequalities and Applications, 2015.85.
  • 10GU Zhao-hui, YANG Bi-cheng. A Hilbert-type integral inequality in the whole plane with a non-homogene- ous kernel and a few parameters [J].. Journal of Inequalities and Applications, 2015.314.

二级参考文献22

  • 1王竹溪 郭敦仁.特殊函数论[M].北京:科学出版社,1979..
  • 2常用不等式[M].济南:山东科技出版社,2004.
  • 3实分析引论[M].长沙:湖南教育出版社,1996.
  • 4HARDY G H, LITTLEWOOD J E, POLYA G. Inequalities [M]. Cambridge: Cambridge University Press, 1952.
  • 5MINTRINOVICE D S, PECARIC J E, FINK A M. Inequalities involving functions and their inte- grals and derivatives [M1. Boston: Kluwer Academic Publishers, 1991.
  • 6YANG B C. Hilbert-type integral inequalities [M]. Dubai: Bentham Science Publishers Ltd., 2009.
  • 7YANG B C. Discrete Hilbert-type inequalities [M]. Dubai: Bentham Science Publishers Ltd.~ 2011.
  • 8YANG B C. On Hilbert's integral inequality [J]. Journal of Mathematical Analysis and Applica- tions, 1998, 220: 778-785.
  • 9YANG B C, CHEN Q. A half-discrete Hilbert-type inequality with a homogeneous kernel and an extension [J]. Journal of Inequalities and Applications, 2011, DOI: 10.1186/1029-242X-2011-124.
  • 10HE B, YANG B C. On a half-discrete inequality with a generalized homogeneous kernel [J]. Journal of Inequalities and Applications, 2012, DOI: 10.1186/1029-242X-2012-30.

共引文献45

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部