期刊文献+

竞争物种的分数阶对流-弥散方程组的有限元方法

Finite Element Solution to Fractional Advection- Dispersion Modle with Two Species
下载PDF
导出
摘要 描述种群增长的分数阶偏微分方程组一般没有解析解,有限元方法是进行数值模拟的有效途径.针对两个竞争物种的非线性分数阶对流-弥散方程组,先进行时间半离散,然后运用压缩映射原理证明变分解的局部存在唯一性,同时给出求解有限元解的一种迭代算法.数值实例表明三次有限元迭代算法的时空收敛阶分别为1和4. Nonlinear space- fractional differential equations( SFDEs) have more and more important applications in population growth model of biology. In this article a time semi- discrete formula and an iteration algorithm for SFDEs are presented. Using fixed point theorem,existence and uniqueness results for corresponding variable problems are proven in fractional derivative spaces. Numerical example illustrates the FEM iteration algorithm has first and fourth convergence rate for time and space,respectively.
作者 吴红英
出处 《怀化学院学报》 2016年第5期10-14,共5页 Journal of Huaihua University
关键词 对流-弥散方程组 分数微分算子 存在唯一性 迭代算法 advection-dispersion equations fractional differential operations existence and uniqueness iteration algorithm
  • 相关文献

参考文献13

  • 1G.J.Fix,J.P.Roop,Least squares finite-element solution of a fractional order two-point boundary value problem[J].Comput.Math.Appl,2004(28):1017-1033.
  • 2V.J.Ervin,J.P.Roop.Variational formulation for the stationary fractional advection dispersion equation[J].Numer.Methods Partial Differential Equations,2006(22):558-576.
  • 3V.J.Ervin,J.P.Roop.Variational solution of fractional advection dispersion equations on bounded domains in Rd[J].Numer.Methods Partial Differential Equations,2007(23):256-281.
  • 4V.J.Ervin,N.Heuer,J.P.Roop.Numerical approximation of a time dependent nonlinear,space-fractional diffusion equation[J].SIAMJ.Numer.Anal,2007(45):572-591.
  • 5B.Baeumer,M.Kovács,M.M.Meerschaert.Fractional reproduction-dispersal equations and heavy tail dispersal kernels[J].Bull.Math.Biol,2007(69):2281-2297.
  • 6B.Baeumer,M.Kovács,M.M.Meerschaert.Numerical solutions for fractional reaction-di.usion equations[J].Comput.Math.Appl,2008(55):2212-2226.
  • 7M.Kirane,Y.Laskri,N.Tatar.Critical exponents of Fujita type for certain evolution equations and systems with spatiotemporal fractional derivatives[J].J.Math.Anal.Appl,2005(312):488-501.
  • 8H.Brunner,L.Ling,M.Yamamoto.Numerical simulations of 2D fractional subdiffusion problems[J].J.Comput.Phys,2010(229):6613-6622.
  • 9Alberto Cabada,Zakaria Hamdi.Nonlinear fractional differential equations with integral boundary value con-ditions[J].Applied Mathematics and Computation,2014(228):251-257.
  • 10Ali Yakar,Mehmet Emir Koksal.Allaberen Ashyralyev,Existence Results for Solutions of Nonlinear Fractional Differential Equations[J].Abstractand Applied Analysis,2012.

二级参考文献14

  • 1I. Podlubny, Fractional differential equations [M]. San Diego: Academic press, 1999:41-89, 199-221.
  • 2K. B. Oldham and J. Spamer, The fractional calculus [M]. New York- London: Academic press, 1974: 46-60, 136- 148.
  • 3K. S. Miller and B. Ross, An Introduction to the fractional calculus and fractional differential equations [ M ] . John Wiley & Sons Inc., New York, 1993:21 - 125.
  • 4Abbasbandy S. Numerical solution of the integral equations: Homotopy perturbation method and Ado- mian decomposition method[J]. Appl. Math. Comput. , 2006,173 : 393-500.
  • 5Saeedi H,Mohseni Moghadam M. Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets[J]. Commun Nonlinear Sci. Numer Simula. ,2011,16:1216-1226.
  • 6Momani S,Odibat Z. Numerical approach to differential equations of fractional order[J]. Comput. Appl. Math. ,2007,207(1) : 96-110.
  • 7Kilbas A A,Trujillo J J. Differential equations of fractional order.. Methods, results and problems[J]. Ap- pl. Anal. ,2001,78:153-192.
  • 8Rawashdeh E. Numerical solution of fractional integro-differential equations by collocation method[J]. Appl. Math. Comput. ,2006,13(7) : 176-186.
  • 9EI-Sayed A M A. Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations[J]. Appl. Math. , 2010,60 : 788-797.
  • 10E1-Kalla I L. Error analysis of Adomian series solution to a class of nonlinear differential equations[J]. Appl. Math. ,2007,7 : 214-221.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部