期刊文献+

高碳化硅含量的镍–钨–微米碳化硅复合电镀及其耐蚀性 被引量:3

Electroplating of nickel–tungsten–micron-silicon carbide composite with high content of silicon carbide and its corrosion resistance
下载PDF
导出
摘要 采用电沉积法在铁片上制备Ni–W–微米SiC复合镀层。研究了微米SiC颗粒用量、pH、电流密度等工艺参数对复合镀层中SiC颗粒含量的影响,得到最优工艺为:NiSO_4·6H_2O 20 g/L,Na_2WO_4·2H_2O 50 g/L,Na_3C_6H_8O_7·2H_2O 50 g/L,微米SiC颗粒20g/L,pH7.0,电流密度2.5 A/dm^2。采用X射线衍射仪、扫描电子显微镜、能谱仪和浸泡腐蚀试验表征了Ni–W–微米SiC复合镀层的晶相结构、表面形貌、元素组成和耐蚀性。采用红外光谱法初步探讨了SiC微米颗粒的沉积机理。结果表明,SiC微米颗粒在复合镀层中的质量分数可高达42.5%,SiC微米颗粒的存在能消除Ni–W合金镀层的裂纹,从而提高镀层对基体的保护能力。镀液中的阴离子可能对SiC微米颗粒的沉积过程有一定的影响。 Ni-W-micron-SiC composite coating was prepared on iron substrate by electrodeposition. The effects of process parameters including dosage of micron SiC particles, pH and current density on the content of SiC particles in composite coating were studied. The optimal process parameters were obtained as follows: NiSO4·6H2O 20 g/L, Na2WO4·2H2O 50 g/L, Na3C6H8O7·2H2O 50 g/L, micron SiC particles 20 g/L, pH 7.0 and current density 2.5 A/dm2. The crystalline phase structure, surface morphology, elemental composition and corrosion resistance of Ni-W-micron-SiC composite coating were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy and immersion corrosion test, respectively. The deposition mechanism of micron SiC particles was preliminarily discussed by infrared spectroscopy. The results indicated that the content of micron SiC particles in composite coating reaches 42.5wt%. The cracks of Ni-W alloy coating can be eliminated possibly due to the existence of micron SiC particles, improving the protection capability of composite coating for matrix. Anions in plating bath may have certain effects on the deposition process of micron SiC particles.
出处 《电镀与涂饰》 CAS CSCD 北大核心 2016年第11期565-570,共6页 Electroplating & Finishing
基金 云南民族大学学院特区研究生创新项目(2015TX06) 国家自然科学基金项目(51561032)
关键词 镍–钨合金 碳化硅 微米颗粒 复合电镀 耐腐蚀 沉积机理 nickel-tungsten alloy silicon carbide micron particle composite electroplating corrosion resistance deposition mechanism
  • 相关文献

参考文献32

  • 1ARGANARAZ M P Q, RIBOTTA S B, FOLQUER M E, et al. The chemistry and structure of nickel-tungsten coatings obtained by pulse galvanostatic electrodeposition [J]. Electrochimica Acta, 2012, 72: 87-93.
  • 2SRIRAMAN K R, RAMAN S G S, SESHADRI S K. Synthesis and evaluation of hardness and sliding wear resistance of electrodeposited nanocrystalline Ni W alloys [J]. Materials Science and Engineering: A, 2006, 418 (1/2): 303-311.
  • 3SUNWANG N, WANGYAO P, BOONYONGMANEERAT Y. The effects of heat treatments on hardness and wear resistance in Ni W alloy coatings [J]. Surface and Coatings Technology, 2011,206 (6): 1096-1101.
  • 4GARCIA-LECINA E, GARCIA-URRUTIA I, DIEZ J A, et al. Electrochemical preparation and characterization of Ni/SiC compositionally graded multilayered coatings [J]. Electrochimica Acta, 2009, 54 (9): 2556-2562.
  • 5HASHEMI M, MIRDAMADI Sh, REZAIE H R. Effect of SiC nanoparticles on microstructure and wear behavior of Cu Ni-W nanocrystalline coating [J]. Electrochimiea Acta, 2014, 138: 224-231.
  • 6WANG Y, ZHOU Q Y, LI K, et al. Preparation of Ni-W-SiO2 nanocomposite coating and evaluation of its hardness and corrosion resistance [J]. Ceramics International, 2015, 41 (1, Part A): 79-84.
  • 7SHAKOOR R A, KAHRAMAN R, WAWARE U, et al. Properties of electrodeposited Ni B-Al2O3 composite coatings [J]. Materials & Design, 2014, 64: 127-135.
  • 8GOLDASTEH H, RASTEGARI S. The influence of pulse plating parameters on structure and properties of Ni W TiO2 nanocomposite coatings [J]. Surface and Coatings Technology, 2014, 259 (Part C): 393-400.
  • 9KASTURIBAI S, KALAIGNAN G P. Characterizations of electrodeposited Ni CeO2 nanocomposite coatings [J]. Materials Chemistry and Physics, 2014, 147 (3): 1042-1048.
  • 10BENEA L, BASA S-B, DANAILA E, et al. Fretting and wear behaviors of Ni/nano-WC composite coatings in dry and wet conditions [J]. Materials & Design, 2015, 65: 550-558.

二级参考文献35

  • 1WANG B Q, LUER K. The erosion-oxidation behavior of HVOF Cr3C2-NiCr cermet coating [J]. Wear, 1994, 174:177-185.
  • 2HOVESTAD A, JANSEN L J J. Electrochemical codeposition of inert particles in a metallic matrix [J]. J Appl Elecrtochem, 1995, 25: 519-527.
  • 3WU Ca, LI N, ZHOU D, MITSUO K. Electrodeposited Co-Ni-Al2O3 composite coatings [.1]. Surf Coat Technol, 2004, 176:157-164.
  • 4KERR C, BARKER D, WALSH F, ARCHER J. The electrodeposition of composite coatings based on metal matrix-included particle deposits [J]. Trans IMF, 2000, 78:171-178.
  • 5YANG Zhi, XU Hui, LI Meng-ke, SHI Yan-li, HUANG Yi, LI Hu-lin. Preparation and properties of Ni/P/single-walled carbon nanotubes composite coatings by means of electroless plating [J]. Thin Solid Films, 2004, 466: 86-91.
  • 6SERHA Z, MORVAN J, BERC P, REZRAZE M, PAGETTI J. Determination of the incorporation rate of PTFE particles in Au-Co-PTFE composite coatings by infrared reflection absorption spectroscopy [J]. Surf Coat Yechnol, 2001,145:233-241.
  • 7NARAYAN R, NARAYANA B H. Electrodeposited chromium-graphite composite coatings [J]. J Electrochem Soc, 1981, 128(8): 1704-1708.
  • 8HUANG Y S, ZENG X T, HU X F, LIU F M. Corrosion resistance properties of electroless nickel composite coatings [J]. Electrochem Acta, 2004, 49:4313-4319.
  • 9GYFTOU P, STROUMBOULI M, PAVLATOU E A, ASIMIDIS P,SPYRELLIS N. Tribological study of Ni matrix composite coatings containing nano and micro SiC particles [J]. Electrochim Acta, 2005, 50:4544-4550.
  • 10BENEA L, BONORA P L, BORLLO A, MARTELLI S, WENGER F, PONTHIAUX P, GALLAND J. Composite electrodeposition to obtain nanostructured coatings [J]. J Etectrochem Soc, 2001, 148: C461-C465.

共引文献5

同被引文献45

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部