期刊文献+

加速度不对称波浪作用下的底部边界层动力特性 被引量:4

Hydrodynamic characteristics of bottom boundary layer under acceleration-skewed waves
下载PDF
导出
摘要 为了研究加速度不对称波浪对底部边界层的影响,建立加速度不对称波浪作用下的底部边界层数学模型,复演物理模型试验中的流速剖面、紊动强度和床面剪切应力,在此基础上探讨加速度不对称波浪边界层的动力特性。结果表明,波峰半周期内正向加速阶段的加速度比较大,引起较快的边界层发育、较大的流速梯度和较大的紊动能量,产生了正向的周期平均床面剪切应力;这些现象随加速度不对称系数的增大而更加明显;在振荡水槽中,加速度不对称波浪边界层内存在底部反向和顶部正向的时均流动,加速度不对称系数的增大会增强底部反向流速;在开敞水域中,时均流速在整个边界层内都是正向的,底部出现"流速外突"的现象,顶部流速趋于均匀分布,加速度不对称系数的增大会减弱底部正向流速。 In order to study the effect of acceleration-skewed waves on the bottom boundary layer,a numerical model was developed to reproduce the velocity profiles,turbulent intensity,and bottom shear stress as measured in a physical model experiment. Based on this,the hydrodynamic characteristics of the boundary layer under the acceleration-skewed waves were examined. Numerical results show that greater flow acceleration in the positive accelerating stage within a wave crest half-cycle leads to quicker development of the boundary layer,a larger velocity gradient,and greater turbulent intensity,resulting in positive period-averaged bottom shear stress. These features become more pronounced when the degree of acceleration skewness increases. In the oscillating water tunnel,the time-averaged current velocities are positive and negative in the upper and lower regions of the boundary layer,respectively,and the negative near-bed current velocity increases with the degree of acceleration skewness.In the open sea,the time-averaged current velocity is positive over the whole boundary layer,velocity over-shooting is found in the lower region,the velocity is uniform in the upper region,and the positive near-bed current velocity decreases with the increase of the degree of acceleration skewness.
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第3期258-264,共7页 Journal of Hohai University(Natural Sciences)
基金 国家自然科学基金(51209082) 教育部高等学校博士学科点专项科研基金(20120094120006) 交通部天津水运工程科学研究所工程泥沙交通行业重点实验室开放课题(2015TKL0101)
关键词 加速度不对称波浪 底部边界层 水动力特性 数值模拟 acceleration-skewed waves bottom boundary layer hydrodynamic characteristics numerical simulation
  • 相关文献

参考文献13

  • 1张弛.沙质海岸横向泥沙输运动力机制与数值模拟[M].南京:河海大学出版社,2010.
  • 2ZHANG C, ZHENG J H, WANG Y G, et al. Modeling wave-current bottom boundary layers beneath shoaling and breaking waves [J]. Geo-Marine Letters, 2011, 31(3) : 189-201.
  • 3RIBBERINK J S, AL-SALEM A A. Sediment transport in oscillatory boundary layers in cases of rippled beds and sheet flow[ J]. Journal of Geophysical Research: Oceans (1978--2012), 1994, 99(C6) : 12707-12727.
  • 4O'DONOGHUE T, WRIGHT S. Concentrations in oscillatory sheet flow for well sorted and graded sands [ J ]. Coastal Engineering, 2004, 50(3): 117-138.
  • 5O'DONOGHUE T, WRIGHT S. Flow tunnel measurements of velocities and sand flux in oscillatory sheet flow for well-sorted and graded sands[ J]. Coastal Engineering, 2004, 51(11/12) : 1163-1184.
  • 6陈纯,蒋昌波,程永舟,张春生.ADV在波浪边界层流动特性研究中的应用[J].泥沙研究,2008,33(5):60-65. 被引量:7
  • 7HOLMEDAL L E, MYRHAUG D. Boundary layer flow and net sediment transport beneath asymmetrical waves [ J ]. Continental Shelf Research, 2006, 26(2): 252-268.
  • 8ABREU T, SILVA P A, SANCHO F, et al. Analytical approximate wave form for asymmetric waves[ J]. Coastal Engineering, 2010, 57(7): 656-667.
  • 9SUNTOYO, TANAKA H, SANA A. Characteristics of turbulent boundary layers over a rough bed under saw-tooth waves and its application to sediment transport [ J ]. Coastal Engineering, 2008, 55 (12) : 1102-1112.
  • 10van der A D A, O'DONOGHUE T, DAVIES A G, et al. Experimental study of the turbulent boundary layer in acceleration- skewed oscillatory flow[ J ]. Journal of Fluid Mechanics, 2011, 684(9) : 251-283.

二级参考文献18

  • 1蒋昌波,白玉川,赵子丹,张红武.沙纹床面上波流共同作用的数值模拟[J].水利学报,2005,36(1):62-68. 被引量:11
  • 2Du Toit C,Sleath J F A. Velocity measurements close to ripple beds in oscillatory, flow[J]. J. Fluid Mech. 1981, (112) :71 - 96.
  • 3Hino M, Kashiwanayagi M, Nakayama A, Hara T. Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow.J Fluid Mech, 1983,131:363 - 400.
  • 4Carlos Marcelo Garcla, Mariano I. Cantero. Acoustic Doppler Velocimeters(ADV) Performance Curves(APCs). Sampling the flow turbulence, 2000.
  • 5Faraci C., Foti E. Evolution of small scale regular patterns generated by waves propagating over a sandy bottom[ J]. Physics of Fluids, 2001,13 : 1624 - 1634.
  • 6Ulrich Lemmin, Thierry Rolland. Acoustic-doppler velocimeter (ADV) for laboratory and field studies [J]. Journal of Hydraulic Engineering, 1997 : 1089 - 1098.
  • 7Rajkumar V. R., Subhasish DEY. Flow field in scoured zone of channel contractions [ J ]. International Journal of Sediment Research, 2004, 19(4) :292 - 311.
  • 8C. Marjolein Dohmen-Janssen, Daniel M. Hanes. Sheet flow and suspended sediment due to wave groups in a large wave flume [ J ]. Continental Shelf Research, 2005, 25 : 333 - 347.
  • 9Ahmed S. M., Shinji Sato. Investigation of bottom boundary layer dynamics of movable bed by using enhanced PIV technique[J]. Coastal Engineering Journal, 2001 , (43)4 : 239 - 258.
  • 10Kim S. - C., Friedrichs C. T. Estimating bottom stress in tidal boundary layer from Acoustic Doppler Velocimeter Data[ J]. Journal of Hydraulic Engineering,2000,7:399 - 406.

共引文献6

同被引文献27

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部