期刊文献+

多参数梯度稀疏正则化图像非盲去模糊

Non-blind Image Deblur with Multi-parameter Gradient Sparse Regularization
下载PDF
导出
摘要 自然图像在不同纹理区域具有不同的梯度特性,通过对图像梯度进行合理分层规划将图像纹理划分为5个区域,对各纹理区域梯度进行l_p范数约束,且每个区域对应1个合适的p指数值,建立多参数正则化模型,有效避免了全局单一p指数的缺陷.最后结合GISA稀疏编码框架,得到更加稳固的复原结果.通过实验对比,发现提出的多参数梯度稀疏正则化方法可以有效地提升图像纹理细节部分视觉质量,同时也能取得更高的信噪比. Natural images have various gradient distributions in different textures, by taking advan- tage of this characteristics we partition image into five different texture regions. We use lp-norm to constraint the gradient of each texture region, and every region corresponds to a suitable p value. Such that we build the multi-parameter regularization model which overcomes the drawback in global image of single p value. Finally, combine with GISA sparse coding framework to get a more solid re- sult. By comparing the experimental result, it proves that our algorithIn can effectively improve the visual quality in details and achieve higher signal to noise ratio.
作者 杨洁 张嵩
出处 《杭州电子科技大学学报(自然科学版)》 2016年第3期73-77,99,共6页 Journal of Hangzhou Dianzi University:Natural Sciences
关键词 lp范数约束 图像梯度 多参数正则化 纹理划分 lp norm constraint image gradient multi-parameter regularization texture partition
  • 相关文献

参考文献9

  • 1TIKHONOV A, ARSENIN V. Solutions of ill-posed problems[J]. Mathematics of Computation, 1978,32 (144) : 491-491.
  • 2RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992,60(1) ..259-268.
  • 3FERGUS R, SINGH B, HERTZMANN A, et al. Removing Camera Shake from a Single Photograph[J]. ACM Transactions on Graphics(TOG), 2006,25 (3) : 787-794.
  • 4KRISHNAN D, FREGUS R. Fast Image Deconvolution using Hyper-Laplacian[J]. Proceedings of Neural Information Processing Systems Blurred Lut Nr,2009 : 1033-1041.
  • 5ZUO W, MENG D, ZHANG L, et al. A Generalized Iterated Shrinkage Algorithm for Non-convex Sparse Coding[C]// Computer Vision (ICCV), 2013 IEEE International Conference on. IEEE,2013..217-224.
  • 6FORTUNATO H E, Oliveira M M. Fast high-quality non-blind deconvolution using sparse adaptive priors[J]. The Visual Computer, 2014,30(6-8) .. 661-671.
  • 7LEE J H, HO Y S. High-quality non-blind image deconvolution with adaptive regularization[J]. Journal of Visual Communication & Image Representation,2011,22(7) :653-663.
  • 8WANG Y, YANG J, YIN W, et al. A new alternating minimization algorithm for total variation image reconstruction[J]. SIAM Journal on Image Science, 2008,1 (3) .. 248-272.
  • 9LUCY L B. An iterative technique for the rectification of observed distributions[J]. The astronomical journal,1974, 79:745-754.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部