期刊文献+

阴离子表面活性剂临界胶束浓度的QSPR研究 被引量:2

Quantitative Structure-Property Relationship of the Critical Micell Concentration of Anionic Surfactant
下载PDF
导出
摘要 以价分子连接指数(0χ,1χ,2χ)为自变量,临界胶束浓度(cmc)为因变量,采用QSPR方法和SPSS 21.0统计软件建立了样本数为40的数学模型。最佳模型为lg cmcobs=2.245-0.7252χ,复相关系数R2=0.864。从预测方程可看出临界胶束浓度与2χ呈负相关关系。筛选过程中发现,0χ,1χ与函数值之间线性关系微弱,与2χ共线性较强,确定了临界胶束浓度最重要影响因素为2阶价分子连接指数(2χ)。内部验证使用留一法(Leave-one-out),得到的交叉验证系数q2=0.831,证明模型稳定性和预测性良好。残差频率分布直方图基本符合正态分布,实验预测值对比图中大部分样本点落在对角线附近,具有明显线性关系。从统计量及图表可证明,该方程可以用来预测阴离子表面活性剂的临界胶束浓度。 A 40-sample mathematical model derived from QSPR is built using Enter Method of SPSS 21.0with molecular connectivityindex of rank zero to two as the independent variable and critical micell concentration as dependent variable.The best model is whose multiple correlation coefficients.It suggests that is negative correlation with the.The weak linear relationship between collining with strongly and function value is found in the screening process,so that the most important factor of is is made sure.Leave-one-out method is chosen for internal verification as a result of q2=0.831,confirming the good stability and predictability.Residuals frequency distribution histogram mainly conform to normal distribution,and with obvious linear relationship sample point in contrast diagram of experimental value and predicted value.It's proved that this equation is able to predict the values of cationic surfactant through the statistics and statistical chart.
出处 《北京石油化工学院学报》 2016年第2期7-11,共5页 Journal of Beijing Institute of Petrochemical Technology
关键词 阴离子表面活性剂 QSPR 临界胶束浓度 anionic surfactant QSPR critical micell concentration
  • 相关文献

参考文献6

二级参考文献129

  • 1Cleon M P, Waters N J, Paine S W, et al. In silico human and rat V88 quantitative structure-actlvlty relationship models[J]. J Med Chem,2006,49(6) :1953-1963.
  • 2Poulin P, Theil F P. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution [ J ]. J Pharm Sci, 2002,91 ( 1 ) : 129-156.
  • 3Redgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1 : Predicting the tissue distribution of moderate-to-strong bases [ J ]. J Pharm Sci, 2005,94(6) :1259-1276.
  • 4Ekins S, de Groot M J, Jones J P. Pharmacophore and three-dimensional quantitative structure-activity relationship methods for modelling cytochrome P450 active sites[ J]. Drug Metab Dispos,2001,29( 7 ) :936-944.
  • 5Ekins S, Bravi G, Binkley S, et al. Three-dimensionalquantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates [J]. J Pharmacol Exp Ther, 1999,290( 1 ) :429-438.
  • 6Ekins S,Bravi G,Ring B J,et al. Three-dimensional quantitative structure activity relationship analyses of substrates for CYP2B6[ J]. J Pharmacol Exp Ther , 1999, 288(1) :21-29.
  • 7Kriegl J M, Eriksson L, Arnhold T, et al. Multivariate modeling of cytochrome P450 3A4 inhibition [ J ]. Eur J Pharm Sci,2005,24 ( 5 ) :451-463.
  • 8Tucker G T, Houston J B, Huang S M. Optlmislng drug development:strategies to assess drug metabolism/transporter interaction potential towards a consensus [ J ]. Br J Clin Pharmacol,2001,52( 1 ) :107-117.
  • 9Ekins S, Berbaum J, Harrison R K. Generation and validation of rapid computational falters for CYP2D6 and CYP3A4 [ J ]. Drug Metab Dispos, 2003, 31 ( 9 ) : 1077-1080.
  • 10Brown H S, Galetin A, Hallifax D, et al. Prediction of in vivo drug-drug interactions from in vitro data :factors affecting prototypic drug-drug interactions involving CYP2C9, CYP2D6 and CYP3A4 [J] .Clin Pharmacokinet,2006,45 (10) :1035-1050.

共引文献75

同被引文献44

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部