期刊文献+

联合稀疏信号恢复的贪婪增强贝叶斯算法 被引量:5

A Greedy Refinement Bayesian Approach to Joint Sparse Signal Recovery
下载PDF
导出
摘要 本文针对联合稀疏信号恢复问题,提出了一种贪婪增强贝叶斯算法.算法首先利用联合稀疏的特点对信号进行建模,然后在贝叶斯框架下,提出一种贪婪推理方式对信号恢复问题进行迭代求解.在迭代过程中,提出算法利用贝叶斯估计的方差信息来增强支撑恢复的结果,极大地提高了算法对信号恢复性能.理论分析表明:提出算法与同步正交匹配追踪算法具有相同的计算复杂度,远低于其他联合稀疏信号恢复算法.提出方法在具有高恢复精度和较低计算复杂度的同时,兼具贝叶斯方法和贪婪算法的优点.数值仿真验证了理论分析的有效性. In this paper,a new greedy refinement bayesian approach ( GRBA), used to solve the joint sparse signal recovery problem, is proposed. The joint sparse property of signals is first used to model the signals. Based on the model, a greedy Bayesian inference method used to estimate the signals is then presented. In order to enhance the performance of the recovery, the covariance matrix got by the Bayesian inference is utilized to refine the support recovery results in our inference process. The analytical results show that GRBA outperforms the reported algorithms in the literature in terms of both the sig- nal recovery accuracy and computational complexity. It keeps both the advantages of Bayesian methods and greedy methods. Numerical simulations verify the effectiveness of the analytical results.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第4期780-787,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61171127 No.61571131) 模拟集成电路重点实验室基金(No.9140C090110130C09003)
关键词 联合稀疏 信号恢复 贪婪算法 贪婪增强贝叶斯算法 joint sparsity signal recovery greedy algorithm greedy refinement Bayesian approach
  • 相关文献

参考文献28

  • 1D L Donoho. Compressed sensing [ J]. IEEE Trans on In- formation Theory,2006,52(4) :1289 - 1306.
  • 2E Candes, T Tao. Decoding by linear programming [ J ]. IEEE Trans on Information Theory, 2005,51 ( 12 ) : 4203 -4215.
  • 3焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:317
  • 4J Chen, X Huo. Theoretical results on sparse representations of multiple measurement vectors [ J ]. IEEE Trans on Signal Processing, 2006,54 ( 12 ) :4634 - 4643.
  • 5P Feng. Universal Minimum-Rate Sampling and Spectrum- Blind Reconstruction for Multiband Signals [ D ]. Cham- paign: University of Illinois, 1997.
  • 6J M Kim, et al. Compressive MUSIC:A missing link be- tween compressive sensing and array signal processing[ J].IEEE Trans on Information Theory, 2012, 58 ( 1 ) : 278 - 301.
  • 7D Malioutov, et al. A sparse signal reconstruction perspec- tive for source localization with sensor arrays [ J ]. IEEE Trans on Signal Processing ,2005,53 ( 8 ) :3010 - 3022.
  • 8M F Duarte, et al. Distributed compressed sensing of jointly sparse signals [ A ]. Asilomar Conference on Signals, Sys- tems and Computers [ C ]. USA: Asilomar, 2005. 1537 - 1541.
  • 9O Lee, et al. Compressive diffuse optical tomography:non- iterative exact reconstruction using joint sparsity [ J ]. IEEE Trans on Medical Imaging ,2011,30( 5 ) : 1129 - 1142.
  • 10周汉飞,李禹,粟毅.基于压缩感知的多角度SAR特征提取[J].电子学报,2013,41(3):543-548. 被引量:5

二级参考文献124

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2006.
  • 3Keller J B. Geometrical theory of diffraction[ J ]. Journal of the Optical of America, 1962,52(2):116- 130.
  • 4Potter L C,Moses R L. Atlributed scattering centers for SAR ATR[ J ]. IEEE Transactions on Image Processing, 1997,6 (1):79- 91.
  • 5Gerry M J,Potter L C,Gupta I J,et al.A parametric model for synthetic aperture radar measurements[J]. IEEE Transac- tions on Antennas and Propagation, 1999, 4 (7): 1179 - 1188.
  • 6Dudgeon D E, Lacoss R T. An overview of automatic target recognition[ J]. Lincoln Lab J, 1993,6(1) : 3 - 10.
  • 7Koets M A, Moses R L. Feature extraction using attributed scattering center models on SAR irnagery[A]. SPIE Confer- ence on Algorithms for SAR Imagry VI[C]. Orlando,FlOli- da, USA: SPIE, 1999.104 - 115.
  • 8Donoho D L. Compressed sensing[ J]. lEvEE Transactions on Information Theory,2006,52(4) : 1289 - 1306.
  • 9Candes E J, Romberg J, Tao T. Robust uncertainly princi- ples: exact signal reconstruction from highly incomplete fre- quency information [ J ]. IEEE. Transactions on Information Theory,2006,52(2) :489 - 509.
  • 10Austin C D,Moses R L,Ash J N,et al.On the relation be- tween sparse reconstruction and parameter estimation with model order selection[ J]. IEEE Journal of Selected Topics in Signal Processing,2010,4(3) :560 - 570.

共引文献321

同被引文献17

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部