期刊文献+

基于多维特征分析的社交网络意见领袖挖掘 被引量:41

Multi-Feature Based Opinion Leader Mining in Social Networks
下载PDF
导出
摘要 在社交网络中进行意见领袖的挖掘对信息传播与演化的深度分析、舆情监控和引导具有重要意义,本文综合结构特征、行为特征和用户的情感特征对意见领袖节点挖掘问题进行研究.本文首先对微博真实文本数据进行话题识别得到主题社区,在主题社区中基于用户节点之间的关注关系构建交互网络拓扑.然后分别从结构、行为和情感三个维度对用户的影响力进行度量.最后,分析用户在主题社区中的影响力分布与传播规律,提出意见领袖识别算法MFP(Multi-Feature PageRank).实验表明,该算法可有效地挖掘潜在的意见领袖节点,能够获得较高的支持率. Mining opinion leaders in social network is important for analysis of information dissemination and evolution of public opinion. This paper conducts the study on this problem considering structural features, behavior and emotional characteristics comprehensively. Firstly, we extract topics from micro-blogging texts, and get user communities according to the topic division, and an interactive network topology of topic community is built with the following relationships. Then, three kinds of user feature are gained from different aspect : network structure, user behavior and user sentiment. Finally, ac- cording to the analysis of users' influence distribution,opinion leaders mining algorithm MFP (Multi-Feature PageRank) is proposed. Experiments show that the algorithm can obtain the potential opinion leader nodes effectively, and have a good performance in support rate from other user nodes.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第4期898-905,共8页 Acta Electronica Sinica
基金 国家863高技术研究发展计划(No.2013AA013503) 东南大学计算机网络和信息集成教育部重点实验室基金(No.93k-9) 国家973重点基础研究发展计划(No.2010CB328104) 国家自然科学基金(No.61272531,No.61202449,No.61272054,No.61370207,No.61370208,No.61300024,No.61320106007,No.61472081) 高等学校博士点学科专项科研基金(No.2011009213002) 江苏省科技计划基金(No.SBY2014021039-10) 江苏省网络与信息安全重点实验室基金(No.BM2003201)
关键词 社交网络 话题 情感分析 意见领袖 social network topic sentiment analysis opinion leader
  • 相关文献

参考文献16

  • 1Ellison N B. Social network sites:Definition, history, and scholarship [ J ]. Journal of Computer-Mediated Communi- cation ,2007,13 ( 1 ) :210 - 230.
  • 2Kleinberg J M. Authoritative sources in a hyperlinked envi- ronment [ J]. Journal of the ACM ( JACM), 1999,46 ( 5 ) : 604 - 632.
  • 3Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine[ J]. ComputerNetworks and ISDN Sys- tems,1998,30(1) :107 - 117.
  • 4Kleinberg J M. Hubs, authorities, and communities [ J ]. ACM Computing Surveys ( CSUR), 1999,31 (4es) :5.
  • 5Zhai Z, Xu H, Jia P. Identifying opinion leaders in BBS [ A ]. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology [ C ]. IEEE, 2008. 398 - 401.
  • 6Amit G, Francesco B, Laks V S L. Discovering leaders from community actions [ A ]. International Conference on Information and Knowledge Management (CIKM) [. C ], California, USA ,2008. 499 - 508.
  • 7Tsai M F, Tzeng C W, Lin Z L, et al. Discovering leaders from social network by action cascade [ J ]. Social Network Analysis and Mining,2014,4( 1 ) :1 - 10.
  • 8Xiaodan S ,Yun C,Koji H,et al. Identifying opinion leaders in the BlogosphereE A]. Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management [C ]. New York, USA ,2007.971 - 974.
  • 9Li Y, Ma S, Zhang Y, et al. An improved mix framework for opinion leader identification in online learning commu- nities [ J ]. Knowledge-Based Systems, 2013,43:43 - 51.
  • 10Zhou H, Zeng D, Zhang C. Finding leaders from opinion networks[ A]. Intelligence and Security Informatics [C ]. Dallas, USA, 2009. 266 - 268.

同被引文献368

引证文献41

二级引证文献249

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部