期刊文献+

基于多尺度选择性学习和探测-收缩机制的PSO算法 被引量:7

A PSO Algorithm Based on Multiscale-Selective-Learning and Detecting-Shrinking Strategies
下载PDF
导出
摘要 针对粒子群算法逃离局部最优能力差、易早熟收敛、求解精度低等缺点,提出了一种具有多尺度选择性学习和探测-收缩机制的PSO算法.在多尺度选择性学习机制中,粒子根据其自身进化状态在拓扑结构、邻居个体、目标变量维等多个尺度上进行选择性学习,提升粒子个体的学习效率;在探测-收缩机制中,算法利用历史信息指导种群最优解进行探测,提高其逃离局部最优的能力,当判断种群历史最优解处于全局最优解附近时,执行空间收缩策略,将种群的搜索空间限定在较小的一个区域,增强算法的开采能力,提高算法的求解精度.通过和其它PSO算法在22个典型测试函数的实验对比表明,本算法能有效克服早熟收敛、加快收敛速度、提高求解精度. To overcome the shortcomings the traditional particle swarm optimization algorithm (PSO), such as poor ability to escape a local optimal ,premature convergence and low precision,we proposed a new PSO based on multiscale-se- lective-learning and detecting-shrinking strategies,which called MDPSO in short. In the multiscale-selective-leaming strate- gy, a particle executes a multiscale learning process to improve its studying efficiency by adopting its topology, selecting neighbors, and choosing target variable dimensions. In the detecting-shrinking strategy ,particles' historical best solutions are periodic sampling and some useful information, which extracting from the sampling results, is used to direct the best solutions to carry out a detecting operation. The aims of the strategy are to improve PSO's global searching ability and to help the popu- lation escape a local optimal solution. While the best solution situating around a global optimal solution, the algorithm imple- ments the shrinking strategy to confine the search space to a small one the aims of which are to improve the PSO's exploitation ability and to increase the accuracy of the solutions. The proposed method was applied to twenty-two typical benchmark functions, and the comparisons of the performance between MDPSO and other eight PSO algorithms were experimented. The results suggest that the proposed strategies can effectively overcome the premature convergence, speed up the convergence and improve solutions accuracy.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第5期1090-1100,共11页 Acta Electronica Sinica
基金 国家自然科学基金(No.41231174 No.61165004 No.61562028) 华东交通大学校立科研项目(No.14JG03) 江西省教育厅科研项目(No.GJJ150539) 江西省自然科学基金(N0.2015BAB207022) 新疆维吾尔自治区高校科研计划青年教师科研启动基金(No.2014JYT041606)
关键词 粒子群算法 早熟收敛 多尺度学习 探测策略 particle swarm optimization premature convergence multiscale learning detecting strategy
  • 相关文献

参考文献17

  • 1Kennedy J, Eberhart R C. Particle swarm optimization [ A ]. Proceedings of IEEE International Conference on Neural Networks [ C ]. Piscataway: IEEE Press, 1995.1942 - 1948.
  • 2Shi Y,Eberhart R C, Fuzzy adaptive particle swarm optimiza- tion [ A ]. Proceedings of IEEE Congress on Evolutionary Computation[ C ]. Seoul ,Korea :IEEE Press ,2001. 1011 - 106.
  • 3Asanga Ratnaweera, Saman K Halgamuge. Self-organizing hierarchical particle swarm optimizer with time-varying ac- celeration coefficients [ J ]. IEEE Transactions on Evolu- tionary Computation, 2004,8 ( 3 ) : 240 - 255.
  • 4Ioan Cristian Trelea. The particle swarm optimization algo- rithm:convergence analysis and parameter selection[ J]. In- formation Processing Letters,2003,85 (6) : 317 - 325.
  • 5M Jiang, et al. Stochastic convergence analysis and parame- ter selection of the standard particle swarm optimization al- gorithm [ J ]. Information Processing Letters, 2007,102 ( 1 ) : 8 -16.
  • 6Zhan Z H,Zhang J,Li Y,et al. Adaptive particle swarm opti- mization[ J]. 1EEE Transaction on Systems,Man,and Cyber- netics-Part B :Cybernetics ,2009,39(6) :1362 - 1381.
  • 7Suganthan P N, Particle swarm optimizer with neighbor- hood operator[ A]. Proceedings of IEEE Congress on Evo- lutionary Computation[ C ]. Washington, D C, USA : IEEE Press, 1999. 1958 - 1962.
  • 8T Peram, K Veeramachaneni, C K Mohan. Fitness-distance- ratio based particle swarm optimization[ A]. Proceedings of Swarm Intelligence Symp. [ C ]. Indianapolis, Indiana, USA : IEEE Press, 2003.174 - 181.
  • 9Rui Mendes, James Kennedy, Jose Neves. The fully in- formed particle swarm-simpler, maybe better [ J ]. IEEE Transactions on Evolutionary Computation, 2004,8 ( 3 ) : 204 -210.
  • 10Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J]. IEEE Transaction on Evolu- tionary Computation, 2006,10 (3) :281 - 295.

二级参考文献34

共引文献89

同被引文献58

引证文献7

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部