期刊文献+

基于同底三角形面积描述的形状检索

Common Base Triangle Area Representation Method for Shape Retrieval
下载PDF
导出
摘要 为了在形状匹配的过程中提高形状特征对边界噪声和图像变形的鲁棒性,同时兼顾形状匹配算法的检索精度和运算效率,提出一种基于同底三角形面积的形状匹配方法.该方法首先计算每个轮廓采样点的同底三角形面积描述子,并对该描述子进行局部平滑,使其更加鲁棒.然后采用加权L1度量方法计算两个形状所有轮廓点的同底三角形描述子之间的距离,获得匹配代价矩阵.最后利用动态规划算法计算匹配代价矩阵的相似度,获得形状距离,实现形状匹配.通过在MPEG-7、Kimia以及铰接形状数据库上测试分析表明,该方法对变形目标具有良好的鲁棒性,且提高了运算效率和检索精度. To solve the problem of contour noise and deformation in shape matching, a novel method based on com- mon base triangle area for improving retrieval accuracy and computational efficiency is proposed. Firstly, a common base tri- angle area descriptor of each sample point is defined based on the area functions of the triangles formed by the other sample points and its two neighbor points. Then the descriptor is local smoothed to keep more compact and robust. Secondly, a match cost matrix is obtained by computing the common base triangle area descriptors of all the sample points on two shapes. Finally, the distance between two shapes is measured based on the match cost matrix by DP algorithm. The experimental results of MPEG-7, Kimia and the articulation shape database indicate that this method is robust to the contour deformation, and the computational efficiency and the retrieval accuracy are all essentially improved.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第5期1247-1253,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.51405320 No.61305020) 江苏省科研基金(No.BK20130316)
关键词 同底三角形 局部平滑 动态规划 混合检索 形状匹配 common base triangle local smoothing dynamic programming mixed retrieval shape matching
  • 相关文献

参考文献4

二级参考文献133

  • 1陈晓飞,王润生.目标骨架的多尺度树表示[J].计算机学报,2004,27(11):1540-1545. 被引量:4
  • 2刘文予,刘俊涛.基于骨架树描述符匹配的物体相似性度量方法[J].红外与毫米波学报,2005,24(6):432-436. 被引量:6
  • 3Blum H. Biological shape and visual science (Part I). Jour- nal of Theoretical Biology, 1973, 38(2): 205-287.
  • 4Belongie S, Malik J, Puzicha J. Shape matching and ob- ject recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509--522.
  • 5Daliri M R, Torre V. Robust symbolic representation for shape recognition and retrieval. Pattern Recognition, 2008, 41(5): 1782-1798.
  • 6Ling H B, Jacobs D W. Using the inner-distance for classi- fication of articulated shapes. In: Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recogni- tion (CVPR). Washington, DC, USA: IEEE, 2005. 719-726.
  • 7Ling H B, Jacobs D W. Shape classification using the inner- distance. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2007, 29(2): 286-299.
  • 8Biswas S, Aggarwal G, Chellappa R. Efficient indexing for articulation invariant shape matching and retrieval. In: Pro- ceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Minneapolis, MN: IEEE, 2007. 1-8.
  • 9Grigorescu C, Petkov N. Distance sets for shape filters and shape recognition. IEEE Transactions on Image Processing, 2003, 12(10): 1274-1286.
  • 10Tu Z W, Yuille A. Shape matching and recognition: using generative models and informative features. In: Proceed- ings of the 8th European Conference on Computer Vision (ECCV). Prague, Czech Republic: Springer, 2004. 195-209.

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部