期刊文献+

NaCl溶液中CO_2置换CH_4水合物的分子动力学模拟 被引量:1

Molecular Dynamics Simulation of Methane Hydrate Replacement With Carbon Dioxide in Aqueous NaCl Solutions
原文传递
导出
摘要 本文采用分子动力学方法,研究NaCl溶液中CO_2置换CH_4水合物的过程。结果表明,模拟开始时,在Na^+、Cl^-离子作用下水合物/溶液相界面处CH_4水合物笼子扭曲形成裂孔,CO_2直接置换CH_4水合物中CH_4,裂孔较大时,CO_2-CH_4分子间发生多次置换;从笼中被置换出的CH_4分子在NaCl溶液中容易聚集成气泡,水合物相和溶液相形成CH_4浓度梯度,水合物开始发生分解;随着较多的CO_2分子进入水合物相中,界面处形成的CH_4-CO_2混合水合物较为稳定,阻碍了进一步置换。 The process of methane hydrate replacement with carbon dioxide in aqueous NaCl solutions is investigated using molecule dynamics simulation.The results show that at the beginning of the simulations,the cages near the hydrate/solution interface distort in the presence of Na+,Cl- ions which causes the opening formation.CO2 molecules directly replace CH4 molecules from CH4 hydrates.Multiple swapping of CO2 and CH4 molecules occurs when the hole is larger.CH4molecules escaped from the cages readily accumulate to form a bubble in NaCl solution.The hydrates start to decompose due to the methane concentration gradient between the hydrate phase and liquid phase.With more CO2 molecules being trapped in hydrates phase,CH4-CO2 mixed hydrates formed near the interface are more stable,which hinders the further swapping process.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2016年第7期1383-1387,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51176192) 广东省自然科学基金资助项目(No.2015A030310422)
关键词 水合物 置换 分子动力学模拟 hydrate replacement molecular dynamics simulation
  • 相关文献

参考文献12

  • 1Kvenvolden K A. Gas Hydrate as a Potential Energy Resource-a Review of Their Methane Content [R]. Reston VA USA: United States Geological Survey, 1993:555-561.
  • 2Ohgaki K, Tal~no K, Sangawa H, et al. Methane Ex- ploitation by Carbon Dioxide From Gas Hydrates--Phase Equilibria for CO2-CH4 Mixed Hydrate System [J]. Jour- nal of Chemical Engineering of Japan, 1996, 29(3): 478-83.
  • 3Uchida T, Takeya S, Ebinuma T. Replacing Methane with CO2 in Clathrate Hydrate: Observation Using RamanSpectroscopy [C]// The 5th International Conference on Greenhouse Gas Control Technology, Collingword, 2001, 523 527.
  • 4Fan S S, Zhou X T, Liang D Q, et al. Replacement of CH4 in Hydrate with CO2 Emulsion [C]// The 27th Westen- Pacific Geophysic Conference, Beijing, 2006.
  • 5TungY T, Chen L J, Chen Y P, et al. In situ Methane Recovery and Carbon Dioxide Sequestration in Methane Hydrates: a Molecular Dynamics Simulation Study [J]. The Journal of Physical Chemistry B, 2011, 115:15295 15302.
  • 6Bai D S, Zhang X R, Chen G J, et al. Replacement Mech- anism of Methane Hydrate with Carbon Dioxide From Mi- crosecond Molecular Dynamics Simulations [J]. Energy & Environmental Science, 2012, 5:7033-7041.
  • 7Kirchner M T, Boese R, Billups W E, et al. Gas Hy- drate Single-crystal Structure Analyses [J]. Journal of the American Chemical Society, 2004, 126:9407~9412.
  • 8Jorgensen W L, Chandrasekhar J, Madura J D, et al. Comparison of Simple Potential Functions for Simulating Liquid Water [J]. The Journal of Chemical Physics, 1983, 79:926.
  • 9Jorgensen W L, Madura J D, Swenson C J. Optimized Intermolecular Potential Functions for Liquid Hydrocar- bons [J]. Journal of the American Chemical Society, 1984, 106:6638-6646.
  • 10Harris J G, Yung K H. Carbon Dioxide's Liquid-Vapor Coexistence Curve and Critical Properties as Predicted by a Simple Molecular Model [J]. The Journal of Chemi- cal Physics, 1995, 99:12021-12024.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部