期刊文献+

PEMFC气体扩散层内PTFE含量及分布对气液两相流影响的LBM研究 被引量:10

Impact of PTFE Content and Distribution on Liquid-Gas Flow in PEMFC Gas Distribution Layer:3D Lattice Boltzmann Simulations
原文传递
导出
摘要 基于数值重建的碳纸气体扩散层(GDL)三维微结构,采用格子玻尔兹曼方法(LBM)模拟了质子交换膜燃料电池(PEMFC)GDL内的气液两相流,详细研究了聚四氟乙烯(PTFE)含量及分布对GDL内两相输运的影响。计算结果发现:PTFE非均匀分布(靠近气流通道侧含量更多)时GDL内更容易积水;PTFE含量较多时GDL内积累的液态水含量较少。基于计算结果推导了气液两相相对渗透率,分析发现:PTFE含量及分布对气相相对渗透率影响较小;液相饱和度小于0.8时,PTFE含量较低时液相相对渗透率较高,而当液相饱和度大于0.8时,PTFE含量较高时液相相对渗透率较高;与PTFE非均匀分布时相比,PTFE均匀分布时液相相对渗透率较高。 The lattice Boltzmann method is employed to simulate the liquid-gas flow in the gas diffusion layer(GDL) in proton exchange membrane fuel cell(PEMFC).Based on the computer generated 3 dimensional GDL,the impact of polytetrafluoroethylene(PTFE) content and distribution on liquid-gas flow in GDL is studied in detail.The results show liquid water is easier to be stuck and to accumulate inside the GDL when PTFE is non-uniformly distributedin the GDL(i.e.,withmore PTFE neighboring to the GC);the liquid saturation diminishes with the increase of PTFE content in GDL when PTFE is uniformly distributed.Based on the resultsof simulated two-phase flow,the relative permeability(Kr) of each phase is derived at different phase saturations.The gas relative permeability(Krg) is less influenced by the PTFE content and distribution comparing to the liquid relative permeability(Krl);the Krl is larger in the GDL of lower PTFE content when the liquid saturation is lower than 0.8,but when the liquid saturation is higher than 0.8,it is smaller compared with that in the GDL with higher PTFE content;in addition,the Krl is lager in the GDL with PTFE uniformly distributed.
作者 陈旺 蒋方明
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2016年第7期1475-1483,共9页 Journal of Engineering Thermophysics
基金 广东省自然科学基金重大基础培育项目(No.2015A030308019) 广州市科技计划项目(No.2014J4100217)
关键词 质子交换膜燃料电池 气体扩散层 格子玻尔兹曼方法 聚四氟乙烯 两相流 proton exchange membrane fuel cell gas diffusion layer LB method PTFE Two-phase flow
  • 相关文献

参考文献51

  • 1Pasaogullari U, Wang C Y. Liquid water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells [J]. Jour- nal of the Electrochemical Society, 2004, 151(3): 399-406.
  • 2Wang C Y. Fundamental Models for Fuel Cell Engineering [J]. Chemical Society Reviews, 2004, 104(10): 4727 4766.
  • 3Jiang F M, Wang C Y. Numerical Modeling of Liquid Wa- ter Motion in a Polymer Electrolyte Fuel Cell [J]. Interna- tional Journal of Hydrogen Energy, 2014, 39(2): 942-950.
  • 4He W, Yi J S, Nguyen T V. Two-Phase flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Field [J]. American Institute of Chemical Engineers, 2000,46(10): 2053-2064.
  • 5Natarajan D, Nguyen T V. A Two-Dimensional, Two- Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conven- tional Gas Distributors [J]~ Journal of the Electrochemical Society, 2001, 148(12): 1324-1335.
  • 6Wu H, Li X G, Berg P. On the Modeling of Water Trans- port in Polymer Electrolyte Membrane Fuel Cells [J]. Elec- trochimica Acta. 2009, 54(27): 6913-6927.
  • 7Hirt C W, Nichols B D. Volume of Fluid(VOF) Method for the Dynamics of Free Boundaries [a]. Journal of Com- putational Physics, 1981, 39(1): 201-225.
  • 8Theodorakakos A, Ons T, Gavaises M. Dynamics of Wra- ter Droplets Detached from Porous Surfaces of Relevance to PEM Fuel Cells [al. Journal of Colloid and Interface Science, 2006, 306(2): 673-687.
  • 9Zhu X, Sui P C, Ned D. Three-Dimensional Numerical Simulations of Water Droplet Dynamics in a PEMFC Gas Channel [J]. Journal of Power Sources, 2008, 181(1): 101- 115.
  • 10Park J W, Jiao K, Li X C. Numerical Investigations on Liquid Water Removal from the Porous Gas Diffusion Layer by Reactant Flow [J]. Applied Energy, 2010, 87(7): 2180-2186.

二级参考文献12

  • 1Wu J F, Yuan X Z, Martin J J, Wang H J, Zhang J J, Shen J, Wu S H, Merida W. J Power Sources, 2008, 184: 104.
  • 2Prasanna M, Cho EA, Lim T H, Oh I H. Electrochim Acta, 2008, 53: 5434.
  • 3Lin J F, Wertz J, Ahmad R, Thommes M, Kannan A M. Electrochim Acta, 2010, 55: 2746.
  • 4Mitsuharu C, Hirofumi D. Electrochem Commun, 2006, 8: 1304.
  • 5Sui S, Zhuo X L, Su K H, Yao X Y, Zhang J L, Du S F, Kendall K. J Energy Chem, 2013, 22: 477.
  • 6Matamoros L, Brüggemann D. J Power Sources, 2006, 161: 203.
  • 7Yan Q G, Toghiani H, Wu J X. J Power Sources, 2005, 158: 316.
  • 8Nakamura S, Nishikawa H, Aoki T, Ogami Y. J Power Sources, 2009, 186: 278.
  • 9Nishiyama E, Murahashi T. J Power Sources, 2011, 196: 1847.
  • 10Manahan M P, Hatzell M C, Kumbur E C, Mench M M. J Power Sources, 2011, 196: 5573.

共引文献5

同被引文献65

引证文献10

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部