期刊文献+

改进正则项的图像盲恢复方法

Image blind deconvolution approach with modified regularization term
下载PDF
导出
摘要 图像恢复是一个反卷积过程,这一过程通常是病态的,其中的盲恢复是一个最常见也最具挑战性的问题。由于盲恢复过程中缺乏点扩散函数的相关先验信息,使得这个过程变得更为复杂。为了保证在得到光滑图像的同时也可以很好地保持图像的边缘信息,本文提出了一个改进的全变分正则项的盲恢复模型,并结合分裂Bregman算法对模型进行了求解。数值计算中采用了快速傅里叶变换和shrinkage公式来降低计算复杂度。数值实验分别对模糊图、含有噪声和高斯模糊的灰度图进行了处理,得到了满意的结果。 Image restoration is a deconvolution process, which is usually morbid. Blind deconvolution is one of the most common and challenging problems. Without priori knowledge on point spread function, the process is therefore more complex, To preserve the edge information of an image as well as its smoothness, we present a blind deconvolution model with a modified total variation regularization term. We also solve the model with split Bregman iteration algorithm. Fast Fourier transform and shrinkage formula are applied in numerical calculation to reduce its computational complexity. We apply the model to the processing for a blurry image and a greyscale image with noise and Gaussian blur in numerical experiment, and then obtain satisfactory results.
出处 《山东科学》 CAS 2016年第3期115-122,共8页 Shandong Science
基金 国家自然科学基金(11271126) 中央高校基本科研业务费专项资金资助(2014ZZD10)
关键词 盲恢复 点扩散函数 分裂Bregman算法 快速傅里叶变换 blind deconvolution point spread function split Bregman algorithm fast Fourier transform
  • 相关文献

参考文献14

  • 1LIU J J, SHI Y Y, ZHU Y G. A fast and robust algorithm for image restoration with periodic boundary conditions [ J]. Journal of Computational Analysis and Applications, 2014, 17 (3) : 524 - 538.
  • 2CHAN T F, GOLUB G H, MULET P. A nonlinear primal-dual ,nethod for total variation-based image restoration [ J ]. SIAM journal on scientific computing, 1999, 20(6) : 1964 - 1977.
  • 3SHI Y Y, CHANG Q S. Efficient algorithm for isotropie and anisotropic total variation deblurring and denoising [ J ]. Journal of Applied Mathematics, 2013, 2013, Aticle ID 797239.
  • 4YOU Y L, KAVEH M. A regularization approach to joint blur identification and image restoration [ J ]. Image Processing, IEEE Transactions on, 1996, 5(3) : 416 -428.
  • 5CHANT F, WONG C K. Total variation blind deconvolution [ J ]. Image Processing, IEEE Transactions on, 1998, 7 (3) : 370 -375.
  • 6LI W H,Li Q L, GONG W G,et al. Total variation blind deconvolution employing split Bregman iteration [ J]. Journal of Visual Communication and Image Representation, 2012, 23 (3) : 409 -417.
  • 7GOLDSTEIN T, OSHER S. The split Bregman method for Ll-regularized problems[ J]. SlAM Journal on Imaging Sciences, 2009, 2(2) : 323 -343.
  • 8RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [ J ]. Physica D: Nonlinear Phenomena, 1992, 60(1) : 259 -268.
  • 9CAI X H, CHAN R, ZENG T Y. A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding[ J], SIAM Journal on Imaging Sciences, 2013, 6( 1 ): 368-390.
  • 10MUMFORD, SHAH D. Optimal approximations by piecewise smooth functions and associated variational problems [ J ]. Communications on Pure and Applied Mathematics, 1989,42 (05) :577 -685.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部