期刊文献+

利用黄瓜加密图谱定位花相关性状QTLs 被引量:8

Mapping of QTLs Associated with Flower-related Traits Using the Encryption Map in Cucumber(Cucumis sativus L.)
原文传递
导出
摘要 本研究利用强雄的华北类型品系S94和全雌的欧洲类型品系S06构建的224个F_(6:7)代重组自交系(RIL)群体对不同季节(F_7/秋,F_7/春两季)黄瓜花相关性状(始花节位ffn,始雌花节位fffn和雌花率sex)劝表型进行研究。利用构建的加密图谱采用WinQTLcart 2.5软件检测3个花相关性状QTL位点。结果显示:(1)构建包含7个连锁群,610个标记的加密图谱覆盖基因组749.2 cM,平均标记间距为1.2 cM;(2)3个花相关性状在F_7/秋与F_7/春两季共检测15个QTLs位点(F_7/秋12个,F_7/春9个)分布于除第4染色体外的黄瓜染色体上。在花相关性状中,春秋两季相同性状都有稳定检测的QTL有6个,其中3个QTLs雌花率sex6.2(18.2%,秋和37.7%,春)、始花节位ffn6.1(16.7%,秋和12.0%,春)和始雌花节位fffn6.1(18.4%,秋和40.1%,春)在两季的贡献率都高于10%,仅1个位点始花节位ffn1.3在单一季节表现高的贡献率(>10%)。 A set of 224 F6:7 recombinant inbred lines(RILs) derived from a cross between S94(Northern China type with the monoecious) and S06(Northern European type with the gynoecious) was used to investigate the phenotypic data of three flower-related traits(first flower node(ffn),first female flower node(fffn),and female flower ratio(sex) in different seasons(F7 in spring and F7 in autumn).The encryption map and WinQTLcart 2.5 software were used to identify the quantitative trait loci for three flower-related traits.Result showed that(1) an encryption map including 610 markers was grouped into seven linkage groups and spanned 749.2 cM with an average marker density of 1.2 cM.(2) Using the F6:7 derived families,a total of 15 QTLs for flower-related traits were detected in F7/autumn(12) and F7/spring(9) and distributed in all chromosomes except for Chromosome 4^th.Of all flowerrelated traits,6 QTL loci for the same traits were detected both in spring and autumn,of which female flower ratio sex6.2(18.2%,autumn,37.7%,spring),first flower node ffn6.1(16.7%,autumn,12.0%,spring) and first female flower node fffn6.1(18.4%,autumn,40.1%,spring) had stable position and higher contribution in both seasons,with a loci(first flower node ffn1.3) showing high contribution(〉10%) in a single season.
出处 《基因组学与应用生物学》 CAS CSCD 北大核心 2016年第6期1530-1538,共9页 Genomics and Applied Biology
基金 上海市自然科学基金项目(15ZR1429800)资助
关键词 黄瓜 遗传图谱 SSR QTL Cucumber Map SSR Flower QTL
  • 相关文献

参考文献18

  • 1Chiba N., Suwabe K., Nunome T., and Hirai M., 2003, Develop ment of microsatellite markers in melon (Cucumis melo L.) and their application to major cucurbit crops, Breeding Sci- ence, 53(1): 21-27.
  • 2Fazio G., Staub J.E., and Stevens M.R., 2003, Genetic mapping and QTL analysis of horticultural traits in cucumber (Cu- cumis sativus L.) using recombinant inbred lines, Theoreti- cal and Applied Genetics, 107(5): 864-874.
  • 3Fan Z.H., Robbins M.D., and Staub J.E., 2006, Population devel- opment by phenotypic selection with subsequent marker-as- sisted selection for line extraction in cucumber (Cucumis scaivus L.), Theoretical and Applied Genetics, 112 (112): 843-855.
  • 4Horejsi T., and Staub J.E., 1999, Genetic variation in cucumber (Cueumis sativus L.) as assessed by random amplified poly- morphic DNA, Genet. Resour. Crop Evol., 46:335-337.
  • 5Kong Q., Xiang C., Yu Z., Zhang C., Liu F., Peng C., and Peng X., 2007, Mining and charactering microsatellites in Cu- eumis melo expressed sequence tags from sequence data- base, Molecular Ecology Notes, 7:281-283.
  • 6Lander E.S, Green P., Abrahamson J., Barlow A., Daly M.J., Lin- coln S.E., and Newburg L., 1987, MAPMAKER: an interac- tive computer package for constructing primary genetic link- age maps of experimental and natural populations, Genom- ics, 1:174-181.
  • 7Lecomte L., Duffe P., Buret M., Servin B., Hospital F., and Causse M., 2004, Marker-assisted introgression of fiveQTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrou- nds, Theoretical and Applied Genetics, 109(3): 658-668.
  • 8马政,薄凯亮,李蕾,钱春桃,陈劲枫.基于西双版纳黄瓜的遗传图谱构建及其重要农艺性状QTL定位分析[J].中国农业科学,2014,47(3):528-536. 被引量:4
  • 9Miao H., Zhang S.P., Wang X.W., Zhang Z.H., Li M., Mu S.Q., Cheng Z.C., Zhang R.W., Huang S.W., Xie B.Y., Fang Z.Y., Zhang Z.X., Weng Y.Q., and Gu X.F., 2011, A linkage map of cultivated cucumber (Cumis sativus L.) with 248 mi- crosatellite marker loci and seven genes for horticulturally important traits, Euphytica, 182(2): 167-176.
  • 10Ren Y., Zhang Z.H., Liu H.J., Staub J., Han Y.H., Cheng Y.H., Li X.F., Lu J.Y., Miao H., Kang H.X., Xie B.Y., Gu X.F., Wang X.W., Du Y.C., Jin W.W., and Huang S.W., 2009, An integrated genetic and cytogenetic map of the cucum- bergenome, PloS One, 4(6): 5795.

二级参考文献26

  • 1漆小泉,朱德蔚,沈镝,张智,孙日飞.大白菜和紫菜薹自交系染色体组DNA的RAPD分析[J].园艺学报,1995,22(3):256-262. 被引量:29
  • 2崔世友,喻德跃.大豆不同生育时期叶绿素含量QTL的定位及其与产量的关联分析[J].作物学报,2007,33(5):744-750. 被引量:24
  • 3许勇,园艺学进展.2,1998年,457页
  • 4许勇,蔬菜种质资源概论,1994年,163页
  • 5张辉,贾继增.AFLP实验操作程序.北京:中国农业科学院作物品种资源研究所,1997:2-10.
  • 6Klein P E, Klein R R, Cartinhour S W, et al. A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res, 2000, 10 (6): 789-807.
  • 7Breyne P, Rombaut D, Van Gysel A, et al. AFLP analysis of genetic diversity within and between Arabidopsis thaliana ecotypes. Mol Gen Genet, 1999, 261: 627-634.
  • 8Saliba-Colombani V, Causse M, Gervais L, et al. Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome, 2000, 43 (1): 29-40.
  • 9Panaud O, Chen X, McCouch S D. Development of microsatellite markers and characterization of sample sequence lengthen polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252:597-607.
  • 10Wang B(王斌), Li C Y(李传友), Zheng H G(郑洪刚), et al. Primary study of rice AFLP analysis-Optimization of reaction conditions and analysis of thermo-sensitive genic male sterile rice allelic mutant lines.Acta Bot Sin(植物学报),1999,41(5):502-507.(in Chinese with English abstract)

共引文献126

同被引文献103

引证文献8

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部