期刊文献+

2219铝合金网格壁板应力松弛时效行为分析 被引量:1

Analysis of stress relaxation behavior of 2219 aluminum alloy mesh panels
下载PDF
导出
摘要 整体网格壁板在航天器结构应用中,采用热压罐成形作为2219T87铝合金网格壁板的成形工艺。在壁板与模具贴模之后,通过应力计算和有限元仿真可得到不同厚度层受到的应力大小。在热压罐中时效时,由于拉、压应力的影响,壁板不同位置材料性能有所差异。结果表明:应力的计算值和仿真值吻合,说明模型的有效性;在透射电子显微镜下观察发现,受拉、压应力区的析出相较低应力区的细小、密集,压应力区又比拉应力区的析出相更加细小密集,这是因为受应力区会产生大量的位错,从而为沉淀物的析出提供更多的形核位置,产生更多细小、针状的析出物,在宏观上反映为析出相越细小、密集,抗拉强度及硬度越高。 The autoclave formation method was used as the forming process of 2219T87 aluminum alloy mesh panel applied in spacecraft structure. After the wall panel close to the mould, stress intensity of different thickness layers can be obtained by stress calculation or finite element simulation. In the aging of autoclave, material performance of panel is different at different positions because of the effect of tensile and compressive stress. The results show that the calculated value is consistent with that of simulation, and can illustrate the effectiveness of the model. It can be found from transmission electron microscopy (TEM) that the precipitation of tensile and compressive area is relatively slight and intensive compared with low stress area. The precipitated phase of compressive area is slighter and more intensive than that of tensile area, because the stressed area can produce abundant dislocations, which provide the precipitation of precipitate with more nucleation site and generate more slight and needlelike precipitate. On a macro level, the slighter and more intensive the precipitated phase is, the higher the strength of extension and hardness becomes.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2016年第3期496-502,共7页 Materials Science and Engineering of Powder Metallurgy
基金 国家重点基础研究发展规划资助项目(2014CB046602) 国家自然科学基金重点项目(51235010)
关键词 2219铝合金 网格壁板 时效成形 应力松弛 应力计算 仿真 弥散强化 2219 aluminum alloy mesh panel aging formation stress relaxation stress calculation simulation dispersion strengthening
  • 相关文献

参考文献12

  • 1ELLISON E G, WALTON D. International conference on creep and fatigue in elevated temperature applications[C]. Institution of Mechanical Engineers, 1973: 173-174.
  • 2POLMEAR I J. Recent developments in light alloys[J]. Materials Transactions JIM, 1996, 37(1): 12-31.
  • 3NARAYANA G V, SHARMA V M J. Fracture behavior of aluminum alloy 2219-T87 welded plates[J]. Science and Technology of Welding &Joining, 2004, 9(2): 121-130.
  • 4刘春飞.运载贮箱用2219类铝合金的电子束焊[J].航天制造技术,2002(4):3-9. 被引量:22
  • 5丁吉坤.不同热处理状态下的2219铝合金变极性TIG焊焊接接头性能研究[D].天津:天津大学,2014:l一50.
  • 6尹旭妮,2219铝合金蠕变时效行为研究及本构建[D].长沙:中南大学,2015:32-35.
  • 7MARCINIAK Z, DUNCAN J L, HU S J. Mechanics of Sheet Metal Forming[M]. Oxford: Butter Worth-Heeinemann, 2002: 27-32.
  • 8赖松柏,陈同祥,于登云.整体壁板结构弹塑性弯曲中性层位置分析[J].宇航材料工艺,2012,42(1):35-37. 被引量:13
  • 9贾树峰,2219铝合金电脉冲作用下的应力时效行为研究[D].长沙:中南大学,2015:24-35.
  • 10SRINIVASA RAO K. et al. Microstructure and high temperature strength of age hardenable AA2219 alurninium alloy modified by Sc, Mg and Zr additions[J]. Material Science and Technology, 2008, 25(1): 92-101.

二级参考文献17

  • 1STARKE JR E A,STALEY J T. Application of modern aluminium alloys to aircraft[J]. Progress in Aerospace Sciences, 1996,32 (2- 3) : 131-172.
  • 2DYMEK S, DOLLAR M. TEM investigation of age hardenable Al 2519 alloy subjected to stress corrosion cracking tests[J]. Materials Chemistry and Physics,2003,81(2-3) :286-288.
  • 3KRAMER L S, BLAIR T, BLOUGH S D. Stress-corosion cracking susceptibility of various product forms of aluminum alloy 2519[J]. Journal of Materials Engineering and Performance, 2002, 11 ( 6 ) : 645-650.
  • 4FISHER J ,JAMES J. Aluminum alloy 2519 in military vehicles[J]. Advance Materials and Processes, 2002,160 (9) : 43-46.
  • 5SINGH S, GOEL D B. Influence of thermomechanical ageing on tensile properties of 2014 aluminium alloy[J]. Materials Science, 1990,25(1) :3 894-3 900.
  • 6PATTANAIK S, SRINIVASAN V, BHATIA M L. Thermomechanical treatment of 2024 aluminium alloy[J].Scripta Metallurgica, 1972,6(3) : 191-196.
  • 7CHUNG D W,CHATURVEDI M C. Studies of the effect of thermomechanical treatments on the superaturation content of strip-cast aluminium alloy 3004[J]. Materials Science and Engineering, 1981, 48(1) :27-34.
  • 8DI RUSSO E, CONSERVA M,BURATTI M, et al. A new thertoo-mechanical procedure for improving the ductility and toughness of Al-Zn-Mg-Cu alloys in the transeveerse direetions[J].Materials Science and Engineering, 1974,14 (1) : 23-26.
  • 9PATON N E, SOMMER A W. Proceedings of the 3rd International Conference on Strength of Metals and Alloys[J]. Cambridge, UK, 1973,1 (2) :101-105.
  • 10SON S K,TAKEDA M,MITOME M,et al. Precipitation behavior of an AI-Cu alloy during isothermal aging at low temperatures[J]. Materials Letters, 2005,59 (6):629-632.

共引文献38

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部