期刊文献+

基于D-S证据理论的直接空冷凝汽器故障诊断方法研究

Research of Fault Diagnosis Method for Air-cooled Condensers Based on the D-S Evidence Theory
下载PDF
导出
摘要 提出一种基于Elman神经网络和RBF神经网络通过D-S证据理论融合的故障诊断方法,把该方法应用在直接空冷凝汽器的故障诊断中。首先对故障进行神经网络初步诊断,得到属于不同故障状态的隶属度,然后采用D-S证据理论融合的方法进行决策诊断,得到最终结果。研究了直接空冷凝汽器的故障特征提取、样本选择、诊断系统结构和学习算法,并通过诊断实例阐述了该方法的具体实现过程,验证了所提方法的可行性,结果表明:该方法适用于直接空冷凝汽器故障诊断,故障定位准确率高。 A fault diagnosis method based on Elman network and RBF network fused by the D-S evidence theory was proposed and applied in the fault diagnosis of air-cooled condensers. In which, having the neural networks adopted for preliminary diagnosis of faults to get the membership degree in relation to different fault status, and then having D-S evidence adopted for decision-making diagnosis to get final result. In addition, the air-cooled condenser' s fault feature extraction, sample selection, diagnosis system structure and the learning algorithm concerned were discussed and this method' s feasibility and implementation were expounded. The diagnosis examples verify this method' s fault tolerance and effectiveness in dealing with complicated fault conditions and it has high accuracy in the fault location.
作者 于兰
出处 《化工机械》 CAS 2016年第3期373-378,415,共7页 Chemical Engineering & Machinery
关键词 直接空冷凝汽器 故障诊断 ELMAN神经网络 RBF神经网络 D-S证据理论 air-cooled condense, fault diagnosis, Elman neural network, RBF neural network, D-S evidence theory
  • 相关文献

参考文献15

二级参考文献100

共引文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部