期刊文献+

基于多层图划分的云环境软件部署管理算法 被引量:1

Hybrid software deployment management algorithm based on multilevel graph partitioning in cloud environment
下载PDF
导出
摘要 针对在云服务器上软件构件分配时需要最大限度地减少所需带宽的问题,提出一种基于多层图划分算法的混合算法,来解决云计算环境中的软件部署问题。该算法对重边匹配(HEM)算法进行改进,同时添加1个新的约束条件来进行粗化,且使用类似KL的算法进行细分,最后结合退火算法从而实现对图划分算法的重新设计和评估。与传统的图划分相比,本文提出的算法考虑到基础设施的异构性,因此不局限于平衡划分。实验仿真结果表明:相比传统的KL图划分算法,提出的混合算法在执行时间和求解质量之间取得很好的平衡,综合性能优于传统算法。 To allocate the software components to the appropriate cloud servers at the same time of minimizing the required bandwidth, a hybrid algorithm based on multi-layer graph partitioning algorithm was proposed for solving the software deployment issues in cloud computing environment. This algorithm improves the heavy-edge matching(HEM) algorithm, adds a new constraint for coarsening, conducts segmentation using the algorithm similar to KL, and finally achieves the re-design and assessment for graph partitioning algorithm in combination with annealing algorithm. Compared with traditional graph partitioning, the proposed algorithm takes into account the heterogeneity of the infrastructure, and so it is not limited to the balance partitioning. The simulation results of test show that compared with the traditional KL graph partitioning algorithm, the proposed hybrid algorithm can achieve a good balance between execution time and solution quality, and so its overall performance is better than that of the traditional algorithms.
作者 戴伟 刘华
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第5期1565-1572,共8页 Journal of Central South University:Science and Technology
基金 教育部人文社会科学研究青年基金资助项目(13YJCZH028)~~
关键词 云计算 图划分算法 退火算法 软件部署 cloud computing graph partitioning algorithm SA algorithm software deployment
  • 相关文献

参考文献19

  • 1钱育蓉,于炯,王卫源,孙华,廖彬,杨兴耀.云计算环境下软硬件节能和负载均衡策略[J].计算机应用,2013,33(12):3326-3330. 被引量:12
  • 2MEYERHENKE H, MONIEN B, SCHAMBERGER S. Graph partitioning and disturbed diffusion[J]. Parallel Computing, 2009, 35(10): 544-569.
  • 3黄树成,李甜,沙爱晖.一种基于图划分的混合属性数据聚类算法[J].计算机应用与软件,2013,30(7):11-13. 被引量:2
  • 4FIDUCCIA C M, MATTHEYSES R M. A linear-time heuristic for improving network partitions[C]// Proceedings of the 19th Design Automation Conference. IEEE Press, 1982: 175-181.
  • 5VAHID F, LET D. Extending the Kernighan/Lin heuristic for hardware and software functional partitioning[J]. Design Automation for Embedded Systems, 1997, 2(2): 237-261.
  • 6CHARDAIRE P, BARAKE M, MCKEOWN G P. A probe-based heuristic for graph partitioning[J]. IEEE Transactions on Computers, 2007, 56(12): 1707-1720.
  • 7ZAMPROGNO R, AMARAL A R S. An efficient approach for large scale graph partitioning[J]. Journal of Combinatorial Optimization, 2007, 13(4): 289-320.
  • 8MARTIN J G. Spectral techniques for graph bisection in genetic algorithms[C]// Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. Washington, USA: ACM, 2006: 1249-1256.
  • 9CHEN J, TAYLOR V E. Mesh partitioning for efficient use of distributed systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2002, 13(1): 67-79.
  • 10HENDRICKSON B, LELAND R. A multilevel algorithm for partitioning graphs[C]// Proceedings of the 1995 ACM/IEEE conference on Supercomputing. California, USA: ACM, 1995: 28-41.

二级参考文献38

  • 1黄涛,陈宁江,魏峻,张文博,张勇.OnceAS/Q:一个面向QoS的Web应用服务器[J].软件学报,2004,15(12):1787-1799. 被引量:28
  • 2赵宇,李兵,李秀,刘文煌,任守榘.混合属性数据聚类融合算法[J].清华大学学报(自然科学版),2006,46(10):1673-1676. 被引量:9
  • 3http://archive.ics.uci.edu/ml/datasets/.
  • 4Livemore Software Technology Corporation [ R ]. I.S-DYNA Theoretical Manual. 2006.
  • 5Livemore Software Technology Corporation[ R ]. LS-DYNA Keyword User' s Manual. 2007.
  • 6Ted Belytschko,Wing Kam Liu,Brian Moran.连续体和结构的非线性.
  • 7Cheeseman P, Stutz J. Bayesian classification (AutoClass) ; Theory and results Advances in Knowledge Discovery and Data Mining [ M ]. AAAI Press/The MIT Press, 1996 : 153 - 180.
  • 8Li C,Biswas G. Unsupervised learning with Mixed Numeric and Nominal Data [J]. IEEE Trans. Knowl. Data Eng. ,2002,14(4):673 - 690.
  • 9Goodall D W. A New Similarity Index Based On Probability [J]. Biometrics , 1966,22:882 - 907.
  • 10He Z,Xu X,Deng S. Clustering Mixed Numeric and Categorical Data: A Cluster Ensemble Approach [ OL ]. eprint arXiv : cs/0509011,2005.

共引文献24

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部