期刊文献+

基于改进BOF算法的图像识别和分类 被引量:4

Image recognition and classification based on improved BOF algorithm
下载PDF
导出
摘要 对bag of features(BOF)算法进行研究与改进,并将其应用到图像识别和分类中。针对传统BOF算法执行效率低以及分类精度不够高等缺陷,提出一种结合SURF(speeded up robust feature)与空间金字塔匹配原理的优化方法相结合的图像识别与分类算法。SURF算法可提高执行效率,而空间金字塔匹配原理的优化方法可提高分类精度。首先对分类图像应用SURF算法提取特征描述符并生成视觉词典,该算法提取的视觉词典能更有效地表示图像特征,且能应对多变的尺度;然后应用空间金字塔匹配原理对图像采用视觉词典的直方图表示,进一步提高分类的准确度;最后利用LIBSVM分类器进行分类。在Graz,Caltech-256和Pascal VOC 2012这3个数据集中进行实验测试。研究结果表明:该方法与传统的BOF算法相比提高了执行效率和分类精度。在数据实验中通过与近几年一些相关研究工作在分类准确率方面进行对比,该方法具有很大的优越性。 Improved bag of features(BOF) algorithm was applied to image recognition and classification. In view of the low efficiency and low classification accuracy of the traditional BOF algorithm, a new recognition and classification algorithm combined SURF(speeded up robust feature) with spatial pyramid matching principle was proposed. SURF algorithm can improve the efficiency, and spatial pyramid matching principle can improve the classification accuracy. Firstly, the image feature was extracted by SURF algorithm and the codebook was generated using the features which were able to respond the changing scales. Secondly, the spatial pyramid matching principle was applied to the image histogram's codebook which can improve the accuracy of the classification. Finally, the image histogram's codebook was used to be the input of LIBSVM classifier. The experiments were carried out based on Graz, Caltech-256 and Pascal VOC 2012. The results show that the proposed method is better than the traditional method in the efficiency and classification accuracy. In addition, the proposed method is compared with some related research work in classification accuracy, and the proposed method has obvious advantages.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第5期1599-1605,共7页 Journal of Central South University:Science and Technology
基金 国家自然科学资金资助项目(70971043) 广东省自然科学基金资助项目(2015A030313408) 江西理工大学科研基金资助项目(NSFJ2015-K13)~~
关键词 BAG of features算法 图像识别分类 SURF 空间金字塔匹配 bag of features algorithm image recognition and classification SURF spatial pyramid matching
  • 相关文献

参考文献19

  • 1WU Lei, HOI S C H, YU Nenghai. Semantics-preserving bag-of-words models and applications[J]. IEEE Transactions on hnage Processing, 2010, 19(7): 1908-1920.
  • 2ZHENG Zhenzhu, YAN Luxin. Global and local explotation for saliency using bag-of-words[J], lET Computer Vision, 2014, 8(4): 299-304.
  • 3CSURKA C DANCE C, FAN L, et al. Visual categorization with bags of keypoints[C]//Proceedings of IEEE Conference on Workshop on Statistical Learning in Computer Vision. Centre Europe, 2004: 1-22.
  • 4SIVIC J, LAB D, ECOLE N, et al. Efficient visual search of videos cast as text retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(4): 591 606.
  • 5YU J, JEON M, PEDRYCZ W. Weighted feature traiectories and concatenated bag-of-features for action recognition[J]. Neurocomputing, 2014, 131 (2): 200-207.
  • 6ANTHIMOPOULOS M M, G1ANOLA L, SCAMATD L, et al. A food recognition system lbr diabetic patients based on an optimized bag-of-fetures modcl[J]. IEEE Journal of Biomedical and Health Informatics, 2014, 18(4): 1261-1271.
  • 7SHEN Linlin, LIN Jiaming, WU Shengyin, et al. HEp-2 image classification using intensity order pooling based features and bag of words[J]. Pattern Recognition, 2013, 47(7): 2419-242.
  • 8PIRES R, HELINEK H F, WAINER J, et al. Advancing bag-of-visual-words representations tbr lesion classification in retinal images[J]. Plos One, 2014, 9(6): e96814.
  • 9LOWED G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 10LI Feifei, FERGUS R, PERONS P. Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories[J]. Special Issue on Generative Model Based Vision, 2007, 106(1): 59-70.

二级参考文献26

  • 1Wu Lei, Hoi S C H, and Yu Neng-hai. Semantics-preserving bag-of-words models mid applications [J]. IEEE Transactions on Image Processing, 2010, 19(7): 1908-1920.
  • 2Uijlings J R R, Smeulders A W M, and Scha R J H. Real-time visual concept classification [J]. IEEE Transactions on Multimedia, 2010, 12(7): 665-681.
  • 3Chao Zhu, Charles-Edmond B, and Chen Li-ming. Visual object recognition using DAISY descriptor [C]. IEEE International Conference on Multimedia and Expo, Barcelona, Spain, July 11-15, 2011: 1-6.
  • 4Wang Meng-yue, Zhang Chang-lin, and Song Yan. Extraction of image semantic features with spatial mean shift clustering algorithm [C]. IEEE 10th International Conference on Signal Processing, Beijing, China, Oct. 24-26, 2010: 906-909.
  • 5Chum O and Zisserman A. An exemplar model for learning object classes [C]. IEEE International Conference on Computer Vision and Pattern Recognition, Minneapolis, MN USA, June 17-22, 2007: 1-8.
  • 6Mathur A and Foody G M. Multiclass and binary SVM classification: implications for training and classificationusers[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2): 241-245.
  • 7Kalyani S and Swarup K S. Classification and assessment of power system security using multiclass SVM [J]. IEEE Transactions on Systems, Man, and Cybermetics, 2011, 41(5): 753-758.
  • 8Grauman K and Darrell T. The pyramid match kernel: discriminative classification with sets of image features [C]. IEEE International Conference on Computer Vision, Beijing, China, Oct. 17-21, 2005:1458- 1465.
  • 9Swain M J and Ballard D H. Color indexing [J]. International Journal of Computer Vision, 1991, 7(1): 11-32.
  • 10Takumi Kobayashi and Nobuyuki Ostu. Bag of hierarchical co-occurrence features for image classification [C]. IEEE International Conference on Pattern Recognition, Istanbul, Turkey, Aug. 23-26, 2010: 3882-3885.

共引文献99

同被引文献42

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部