摘要
The N = 28 shell gap in sulfur, argon, calcium and titanium isotopes is investigated in the framework of relativistic continuum Hartree-Bogoliubov (RCHB) theory. The evolutions of neutron shell gap, separation energy, single particle energy and pairing energy are analyzed, and it is found that the N = 28 shell gap is quenched in sulfur isotopes but persists in argon, calcium and titanium isotopes. The evolution of the N = 28 shell gap in the N = 28 isotonic chain is discussed, and the erosion of the N = 28 shell gap is understood with the evolution of potential with proton number.
The N = 28 shell gap in sulfur, argon, calcium and titanium isotopes is investigated in the framework of relativistic continuum Hartree-Bogoliubov (RCHB) theory. The evolutions of neutron shell gap, separation energy, single particle energy and pairing energy are analyzed, and it is found that the N = 28 shell gap is quenched in sulfur isotopes but persists in argon, calcium and titanium isotopes. The evolution of the N = 28 shell gap in the N = 28 isotonic chain is discussed, and the erosion of the N = 28 shell gap is understood with the evolution of potential with proton number.
基金
Supported by Major State 973 Program of China(2013CB834400)
National Natural Science Foundation of China(11175002,11335002,11375015,11461141002)
Research Fund for Doctoral Program of Higher Education(20110001110087)