期刊文献+

等离子体点火器设计及其放电特性研究 被引量:10

Design of Plasma Igniter and Research on Discharge Characteristics
下载PDF
导出
摘要 基于等离子体放电理论,设计了3种不同形式的等离子体点火器:环形等离子体点火器、碟形等离子体点火器和圆柱等离子体点火器。对于不同的等离子体点火器,研究了在电源激励形式、电压、气体压力变化时的点火器放电特性,并将等离子体点火器与普通火花塞点火器的点火进行了对比分析。结果表明:设计的3种等离子体点火器能够有效地产生等离子体放电流注;随着放电环境的空气气压的逐渐升高,等离子体点火器的临界放电电压不断增大;在低气压时,击穿阈值电压随气压增加呈线性上升,基本符合帕邢定律的放电公式,在高气压时,放电阈值电压会偏离帕邢定律。 Based on the plasma discharge theory,three different forms of plasma igniters are designed,i.e.toroidal plasma igniter,disc and cylindrical plasma igniters.For different plasma igniters,the discharge characteristics of the igniters are investigated under the different forms of excitation power,voltage and gas pressure.The plasma igniters are compared with spark ignition.The results show that the plasma discharge stream can be produced by the plasma igniters.The discharge threshold voltage increases with the increasing air pressure.At low pressure,the discharge threshold voltage increases with the increasing pressure linearly,which is in accordance with the Paschen law.At high pressure,the discharge threshold voltage will deviate from the Paschen law.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第3期396-401,共6页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(51436008 51106179)资助项目
关键词 等离子体点火 火花塞点火 放电特性 阈值电压 plasma ignition spark ignition discharge characteristics threshold voltage
  • 相关文献

参考文献19

  • 1葛袁静,张广秋,陈强,等.等离子体科学技术及其在工业中的应用[M].北京:中国轻工业出版社,2011.
  • 2Starikovskaia S M, Yu S A. Plasm~assisted ignition and eombustion[J]. Progress in Energy and Combus tion Science, 2013,39(1) :61-110.
  • 3Leonov S, Yarantsev D, Napatovich A,et al. Plas-ma-assisted ignition and flame holding in high-speed flow[R]. AIAA-2006-563,2006.
  • 4Tardiveau P, Marode E, Agneray A. Tracking an in- dividual streamer branch among others in a pulsed in- duced discharge[J].Journal of Physics D: Applied Physics, 2002, 35(21).. 2823-2829.
  • 5Nudnova M M, Pancheshnyi S V, Starikovskii A Y. Non equilibrium plasma formation by high-voltage pulsed nanosecond gas discharge at different pres suresER~. AIAA 2004-0353.2004.
  • 6Robert E, Sarron V, Ri6s D, et al. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun[J]. Plasma Sources Science and Technology, 2012, 21 (3): 034017.
  • 7Zhu J, Gao J, Li Z, et al. Sustained diffusive alter- nating current gliding arc discharge in atmospheric pressure air[J].Applied Physics Letters, 2014, 105 (23) : 234102.
  • 8Cathey C D, Tao Tang, Taisuke Shiraishi, et al. Nanosecond plasma ignition for improved perform- ance of an internal combustion engine [J]. IEEE Transactions on Plasma Science, 2007, 35 (6) : 164- 1668.
  • 9Matveev I, Matveeva S, Gutsol A. Non-equilibrium plasma igniters and pilots for aerospace application [R]. AIAA-2005-1191,2005.
  • 10Naples A, Tao Sheng, Yu J, et al. Pressure scaling effects on ignition and detonation initiation in a pulse detonation engine[R]. AIAA-2009-1062, 2009.

共引文献6

同被引文献84

引证文献10

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部