期刊文献+

一类时间分数阶伪抛物方程基本解的存在性

The existence of fundamental solution for a class of time fractional pseudoparabolic equations
原文传递
导出
摘要 通过Fourier变换和Laplace变换及相应的逆变换找出基本解的Fourier变换的表达式,讨论一类时间分数阶伪抛物方程基本解的存在性.并通过该表达式证明了基本解的存在性和非负性. The fundamental solutions for a class of the time fractional pseudoparabolic partial differential equations are discussed in this paper by using Fourier transform,Laplace transform and their corresponding inverse transforms. The existence and the nonnegativity of the fundamental solution are proved in the end.
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2016年第3期364-367,374,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(Z0511015)
关键词 伪抛物方程 CAPUTO导数 LAPLACE变换 FOURIER变换 pseudoparabolic equations Caputo derivative Fourier transform Laplace transform
  • 相关文献

参考文献5

  • 1郭柏灵,蒲学科,黄凤辉.分数阶偏微分方程及其数值解[M].北京:科学出版社,2011.
  • 2黄凤辉,郭柏灵.一类时间分数阶偏微分方程的解[J].应用数学和力学,2010,31(7):781-790. 被引量:13
  • 3GORENFLO R, LUCHKO Y, MAINARDI F. Wright functions as scale- invariant solutions of the diffusion- wave equation[J]. Computational and Applied Mathematics, 2000, 118( 1 ) : 175 - 191.
  • 4WANG W, YANG T. The pointwise estimates of solutions for euler equations with damping in multi - dimensions [ J ]. Journal of Differential Equations, 2001, 173(2) : 410 -450.
  • 5GOPALA RAO V R, TING T W. Solutions of pseudo -heat equations in the whole space[ J]. Archive for Rational Mechanics and Analysis. 1972, 49( 1 ) : 57 -78.

二级参考文献8

  • 1Podlubny I. Fractional Differential Equations[ M]. San Diego: Academic Press, 1999.
  • 2Gorenflo R, Luchko Y, Mainardi F. Wright function as scale-invariant solutions of the diffusion-wave equation[J]. J Comp Appl Math, 2000, 118(1/2) : 175-191.
  • 3Mainardi F, Paradisi P, Gorenflo R. Probability distributions generated by fractional diffusion equations[C]//Kertesz J, Kondor I. Econophysics: an Emerging Science. Dordrecht: Kluwer Academic Publishers, 1998.
  • 4Mainardi F, Luchko Y, Pagnini G. The fundamental solution of the space-time fractional diffusion equation[ J ]. Fractional Calculus and Applied Analysis, 2001, 4(2) : 153-192.
  • 5Wyss W. The fractional diffusion equation[ J]. J Math Phys, 1986, 27( 11 ) :2782-2785.
  • 6Chen J, Liu F, Anh V. Analytical solution for the time-fractional telegraph equation by the method of separating variables [J]. J Math Anal Appl, 2008, 338 (2) : 1354-1377.
  • 7Agrawal O P. Solution for a fractional diffusion-wave equation defined in a bounded domain [ J ]. Nonlinear Dynamics, 2002, 29 ( 1/4 ) : 145-155.
  • 8Gorenflo R, Mainardi F. Fractional calculus: integral and differential equations of fractional order[ C]//Carpinteri A, Mainardi F. Fractals and Fractional Calculus in Continuum Mechanics. New York: Springer, 1997 : 223-275.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部