期刊文献+

局部窗口动态选择的RSF模型 被引量:1

An improved RSF model changing dynamically the size of local windows
原文传递
导出
摘要 针对PDE(partial differential equation)图像分割模型-RSF(region-scalable fitting energy)模型对初始轮廓线选择敏感问题,提出根据图像的灰度变化信息动态选择高斯核函数窗口大小的改进RSF模型.实验表明,该模型提高了RSF模型对初始轮廓线的鲁棒性. RSF( region- scalable fitting energy) model is a famous PDE( partial differential equation) image segmentation model,which is sensitive to initialization. To address this problem,a modified RSF model whose the window size of Gaussian kernel function to each pixel in images be selected dynamically is proposed. The window sizes of Gaussian kernel functions of the model depend on the intensity of images. The experimental results show that the proposed model allows for more robustness to initialization compared to the original RSF model.
作者 林静 王美清
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2016年第3期413-418,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(11071270)
关键词 图像分割 RSF模型 高斯核函数 边缘停止函数 image segmentation region-scalable fitting energy model Gaussian kernel function edge stopping function
  • 相关文献

参考文献12

  • 1MICHAEL K, ANDRE W, DEMETRI T. Active contour models[J]. International Journal of Computer Vision, 1987, 1 (4) : 321 - 331.
  • 2MUMFORD D, SHAH J. Optimal approximation by piece - wise smooths functions and associated variational problems [ J ]. Communications on Pure and Applied Mathematics, 1989, 42 (5) : 677 - 685.
  • 3CASELLES V, KIMMELS R, SAPIRO G. Geodesic active contours[ J]. Comput Vis, 1997, 22(1) : 61 -79.
  • 4CHAN T, VESE L. Active contours without edges[ J]. 1EEE Trans Image Process, 2001, 10(2) : 266 -277.
  • 5TSAI A, YEZZI A, WILLSKY A S. Curve evolution implementation of the Mumford - Shah functional for image segmentation, denoising, interpolation, and magnification[ J l. IEEE Transaction on Image Processing, 2001, 10(8) : 1 169 -1 186.
  • 6VESE L A, CHANT F. A multiphase level set framework for image segmentation using the Mumford Shah model[ J]. Inter- national Journal of Computer Vision, 2002, 50 (3) : 271 - 293.
  • 7LI C, KAO C, GORE J, et al. Implicit active contours driven by local binary fitting energy[ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Minneapolis : IEEE, 2007 : 1 - 7. DOI : 10.1109/CVPR. 2007. 383014.
  • 8LI C, KAO C, GORE J C, et al. Minimization of region - scalable fitting energy for image segmentation[ J]. IEEE Trans Image Process, 2008, 17(10) : 1 940- 1 949.
  • 9WANG L, LI C, SUM Q, et al. Brain MR image segmentation using local and global intensity fitting active contours/surfaces [J]. Proceedings of Medical hnage Computing and Computer Aided Intervention (MICCAI) , 2008, 11 (1) : 384 -392.
  • 10WANG L, LI C, SUN Q, et al. Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation [ J]. Computerized Medical Imaging and Graphics, 2009, 33 (7) : 520- 531.

二级参考文献13

  • 1CASELLES V, CATFE F, COLL T, et al. A geometric model for active contours in image processing[ J]. Numerische Mathematik, 1993, 66(1): 1-31.
  • 2LI C M, XU C Y, GUI C F, et al. Level set evolution without re-ini- tialization: a new variational formulation[ C] // IEEE International Conference on Computer Vision and Pattern Recognition. San Die- go: IEEE Computer Society Press, 2005:430 -436.
  • 3LI C M, XU C, GUI C, et al. Distance regularized level set evolu- tion and its application to image segmentation[ J]. IEEE Transac- tions on Image Processing, 2010, 19(12) : 3243 -3254.
  • 4CHAN T, VESE L. Active contours without edges[ J]. 1EEE Trans- actions on Image Processing, 2001, 10(2) : 266 -277.
  • 5LANKTON S, TARMENBAUM A. Localizing region-based active contours[ J]. IEEE Transactions on Image Processing, 2008, 17 (11) : 2029 - 2039.
  • 6ZHANG K, SONG H, ZHANG L. Active contours driven by local image fitting energy[ J]. Pattern Recognition, 2010, 43(4) : 1199 - 1206.
  • 7LI C M, HUANG R, DING Z H. A level set method for image seg- mentation in the presence of intensity inhomogeneities with applica- tion to MRI[ J]. IEEE Transactions on Image Processing, 2011, 20 (7) :2007 -2016.
  • 8LI C M, KAO C Y, GORE J C, et al. Implicit active contours driv- en by local binary fitting energy[ C]//CVPR'07: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2007:1 -7.
  • 9LI C M, KAO C Y, GORE J C, et al. Minimization of region-scal- able fitting energy for image segmentation [ J]. IEEE Transactions on Image Processing, 2008, 17(10) : 1940 - 1949.
  • 10WANG L, LI C, SUN Q, et al. Active contours driven by local and global intensity fitting energy with application to brain MR im- age segmentation[ J]. Computerized Medical Imaging and Graph- ics, 2009, 33(7): 520-531.

共引文献5

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部