期刊文献+

基于卷积神经网络的树叶识别的算法的研究 被引量:5

Based on Leaves Convolutional Neural Network Recognition Algorithm
下载PDF
导出
摘要 该文研究了将卷积神经网络应用在树叶识别方面,并通过卷积过程对图片进行可视化。实验表明,卷积神经网络应用在树叶识别达到了92%的识别率。另外,将此神经网络与支持向量机进行比较研究,从试验中可以得出,卷积神经网络在无论是精度方面还是速度方面都要优于支持向量机,可见,卷积神经网络在树叶识别方面具有很好的应用前景。 In this paper,the convolution neural network recognition in the leaves,and the process by convolution of image visualization.Experiments show that the neural network application identification convolution leaves a 92% recognition rate.In addition,this neural network and support vector machine comparative study can be drawn from the study,convolutional neural network in either speed or accuracy better than support vector machines,visible,convolution neural network in the leaves aspect has good application prospects.
作者 许振雷 杨瑞 王鑫春 应文豪 XU Zhen-lei, YANG Rui, WANG Xin-chun, YING Wen-hao (School of Computer Science and Engineering, Changshu Institute of Technology, Changshu 215500, China)
出处 《电脑知识与技术》 2016年第4期194-196,共3页 Computer Knowledge and Technology
基金 大学生实践创新训练计划资助
关键词 树叶识别 支持向量机 卷积神经网络 recognition leaves SVM convolutional neural network
  • 相关文献

参考文献6

  • 1Bell A, Sejnowski T. An Information-Maximization Approach to Blind Separation and Blind Deconvolution[J]. Neural Com- putation, 1995, 7(6):1129-59.
  • 2Altman N S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression[J]. American Statistician, 1992, 46 (3):175-185.
  • 3Ripley B D, Hjort N L. Pattern Recognition and Neural Net- works[M]. Pattern recognition and neural networks. Cambridge University Press,, 1996:233-234.
  • 4Ltcun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
  • 5Klein S, Pluim J P W, Staring M, et al. Adaptive Stochastic Gradient Descent Optimisation for Image Registration[J]. Inter- national Journal of Computer Vision, 2009, 81(3):227-239.
  • 6赵志宏,杨绍普,马增强.基于卷积神经网络LeNet-5的车牌字符识别研究[J].系统仿真学报,2010,22(3):638-641. 被引量:151

二级参考文献10

  • 1任柯昱,唐丹,尹显东.基于字符结构知识的车牌汉字快速识别技术[J].计算机测量与控制,2005,13(6):592-594. 被引量:16
  • 2贾婧,葛万成,陈康力.基于轮廓结构和统计特征的字符识别研究[J].沈阳师范大学学报(自然科学版),2006,24(1):43-46. 被引量:11
  • 3廉飞宇,付麦霞,张元.基于支持向量机的车辆牌照识别的研究[J].计算机工程与设计,2006,27(21):4033-4035. 被引量:12
  • 4Al-Hmouz R, S Challa. Intelligent Stolen Vehicle Detection using Video Sensing [C]// Proceeding of Information, Decision and Control. Adelaide, Qld., Australia. USA: IEEE, 2007: 302-307.
  • 5LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition [C]//Proc. IEEE, 1998. USA: IEEE, 1998: 2278-2324.
  • 6Steve Lawrence, C Lee Giles, Ah Chung Tsoi, Andrew D Back. Face Recognition: A Convolutional Neural Network Approach [J]. IEEE Trans. on Neural Networks (S1045-9227), 1997, 8(1): 98-113.
  • 7Lauer F, C Y Suen, Bloch G. A trainable featare extractor for handwritten digit recognition [J]. Pattern Recognition (S0031-3203), 2007, 40(6): 1816-1824.
  • 8Tivive, Fok Hing Chi, Bouzerdoum, Abdesselam. An eye feature detector based on convolutional neural network [C]// Proc. 8th Int. Symp. Signal Process. Applic. Sydney, New South Wales, Australia. USA: IEEE, 2005: 90-93.
  • 9Szarvas Mate, Yoshizawa Akira, Yamamoto Munetaka, Ogata Jun. Pedestrian detection with convolutional neural networks [C]//IEEE Intelligent Vehicles Symposium Proceedings. USA: IEEE, 2005: 224-229.
  • 10Y Le Cun, U Muller, J Ben, E Cosatto, B Flepp. Off-road obstacle avoidance through end-to-end learning [M]. Advances in Neural Information Processing Systems. USA: MIT Press, 2005.

共引文献150

同被引文献37

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部