期刊文献+

基于置信区域内多级动态层表达的类贯序蒙特卡洛视觉跟踪方法 被引量:4

Quasi-Sequential Monte Carlo Visual Tracking Based on Multilevel Dynamic Layer Representations in Confidence Region
下载PDF
导出
摘要 视觉跟踪是智能监控、机器人和视觉导航等领域的核心技术.针对现有类贯序蒙特卡洛跟踪方法复杂度高、实时性差的问题,本文提出了一种融合置信区域内多级动态层表达的跟踪方法,采用更加可靠、有效的粒子模拟状态后验概率.该方法利用检测模块得到目标可能出现的置信区域,根据真实目标尺寸给出一种粒子采样策略,每个粒子代表一级动态层表达,并为每个粒子建立双层运动模型;构建Mean-Shift分块观测模型以引入空间和外观信息,同时根据子块的匹配程度计算粒子权值、检测目标遮挡状态并提出模型更新策略.在公开视频序列上同经典粒子滤波和Mean-Shift等算法的实验对比结果证明了本文算法具有较优的跟踪准确度和实时性. Visual tracking is a core technology for the application domains of intelligent monitoring,robotics and vi-sion navigation,etc.Aiming at the problem of high complexity and poor real-time performance in the existing quasi-sequen-tial Monte Carlo tracking algorithms,this paper presents a method based on multilevel dynamic layer representations,which simulates the posteriori probability of a state using more reliable and effective particles.Then a sampling strategy is proposed in confidence areas derived from the detector,in which each particle represents a dynamic representation and has a two-layer motion model.The observation model based on parted-mean-shift is constructed for space and appearance information.De-pending on the degree of matching sub-blocks,the weight of particles is calculated and a way to detect the occlusion state of an object is put forward for realtime model update.Experimental results using challenging public video sequences show bet-ter accuracy and efficiency of the proposed method,compared with the classical particle filter and mean-shift algorithms,etc.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第6期1355-1361,共7页 Acta Electronica Sinica
基金 国家科技重大专项(No.2014ZX03006003)
关键词 视觉跟踪 置信区域 双层多级运动模型 分块观测模型 模型更新 visual tracking confidence region two-layer multilevel motion model block-based observation model model update
  • 相关文献

参考文献14

  • 1Xue J,Zheng N,Geng J.Tracking multiple visual targets via particle-based belief propagation[J].IEEE Transactions on SMC,Part B,2008,38(1):196-209.
  • 2Matej K,Stanislav K.A two-stage dynamic model for visual tracking[J].IEEE Transactions on SMC,Part B,2010,40(6):1505-1520.
  • 3Han H,Ding Y S,Hao K R.An evolutionary particle filter with immune genetic algorithm for intelligent video target tracking[J].Computer & Mathematics with Applications,2011,62(7):2685-2695.
  • 4Chang C,Ansari R.Kernel particle filter for visual tracking[J].IEEE Signal Processing Letters,2005,12:242-245.
  • 5Comaniciu D,Meer P.Mean shift:A robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 6Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
  • 7Cong D T,Septier F,Garnier C,et al.Robust visual tracking via MCMC-based particle filter[A].IEEE International Conference on Acoustics,Speech and Signal Processing[C].Kyoto:IEEE Press,2012.1493-1496.
  • 8Brown J A,Capson D W,Member S.A framework for 3D model-based visual tracking using a GPU-accelerated particle filter[J].IEEE Transactions on Visualization and Computer Graphics,2012,18(1):68-80.
  • 9Anderson C,Bert P,Vander W.Change detection and tracking using pyramids transformation techniques[A].Proceedings of SPIE Conference on Intelligent Robots and Computer Vision[C].Cambridge MA:Elsevier Press,1985.72-78.
  • 10Wang L F,Yan H P,Wu H Y.Forward-backward mean-shift for visual tracking with local-background-weighted histogram[J].IEEE Transactions on Intelligent Transportation Systems,2013,14(3):1480-1489.

同被引文献27

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部