期刊文献+

基于语义路径的异质网络社区发现方法 被引量:4

Community Detection in Heterogeneous Network with Semantic Paths
下载PDF
导出
摘要 社区发现是社会网络研究的热点问题,综合利用社会网络中不同对象间的异质信息,可以更加有效地挖掘网络中的社区结构.针对传统的社区发现方法无法有效地利用异质信息的问题,本文提出了一种基于语义路径的异质网络社区发现方法,该方法首先定义网络中的语义路径,通过语义路径来衡量不同类型对象间的异质信息相似度,然后以此构造可靠性矩阵,作为半监督非负矩阵分解的正则化约束项,进而实现异质网络的社区划分.在真实数据集上的实验结果表明,所提出的方法能够更准确地发现异质网络中的社区结构. Community detection is an important and crucial issue in social networks.Using different objects’informa-tion can help detect the community structure.However,many existing community detection methods are hardly applied in heterogeneous networks.To address the above problem,we propose a semantic-path based community detection method.This method first calculates the similarity matrix based on semantic paths,obtaining the reliability matrix to build a graph regulari-zation term.Then the nonnegative matrix factorization is employed to achieve the community detection in heterogeneous net-works.Simulation on real web data demonstrates that our proposed algorithm can detect the community structure in heteroge-neous networks.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第6期1465-1471,共7页 Acta Electronica Sinica
基金 国家科技支撑计划(No.2014BAH30B01)
关键词 异质网络 社区发现 语义路径 非负矩阵分解 heterogeneous network community detection semantic path nonnegative matrix factorization
  • 相关文献

参考文献4

二级参考文献132

  • 1鲁明羽,沈抖,郭崇慧,陆玉昌.面向网页分类的网页摘要方法[J].电子学报,2006,34(8):1475-1480. 被引量:5
  • 2Fortunato Santo. Community detection in graphs [J] Physics Re- ports,2010,486 (3-5) :75-174.
  • 3Hofmann Thomas. Probabilistic latent semantic indexing [ C ]. Pro- ceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 1999: 50-57.
  • 4Blei David-M, Ng Andrew-Y, Jordan Michael-I. Latent dirichlet al-location [ J ]. The Journal of Machine Learning Research, 2003,3 ( 1 ) :993-1022.
  • 5Cohn Dvaid,Chang Huan. Learning to probabilistically identify au- thoritative documents [ C]. Proceedings of the 17th International Conference on Machine Learning ,2000 : 167-174.
  • 6Erosheva Elena, Fienberg Stephen, Lafferty John. Mixed-member- ship models of scientific publications [ C ]. Proceedings of the Na- tional Academy of Sciences of the United States of America,2004 : 5220-5227.
  • 7Yang Tian-bao, Jin Rong, Chi Yun, et al. Combining link and con- tent for community detection: a discriminative approach [ C ]. The 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining ,2009:927-936.
  • 8Snijders Tom-A B, Nowicki Kizysztof. Estimation and prediction for stochastic blockmodels for graphs with latent block structure [ J]. Journal of Classification, 1997,14 ( 1 ) :75-100.
  • 9Airoldi Edoardo-M, Blei David-M, Fienberg Stephen-E, et al. Mixed membership stochastic blockmodels [J]. The Journal of Machine Learning Research,2008,9( 1 ) :1981-2014.
  • 10Cohn David, Hofmann Thomas. The missing link-a probabilistic model of document content and hypertext connectivity [ C ]. Ad- vances in Neural Information Processing Systems,2000:430-436.

共引文献78

同被引文献33

引证文献4

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部