期刊文献+

小数据集BN建模方法及其在威胁评估中的应用 被引量:8

The Modeling Method with Bayesian Networks and Its Application in the Threat Assessment Under Small Data Sets
下载PDF
导出
摘要 贝叶斯网络是数据挖掘领域的主要工具之一.在某些特定场合,如重大装备的故障诊断、地质灾害预测及作战决策等,希望用少量数据得到较好的结果.因此,本文针对小数据集条件下的贝叶斯网络学习问题展开研究.首先,建立基于连接概率分布的结构约束模型,提出I-BD-BPSO(Improved-Bayesian Dirichlet-Binary Particle Swarm Optimization)结构学习算法;其次,建立单调性参数约束模型,提出MCE(Monotonicity Constraint Estimation)参数学习算法;最后,应用所提算法构建威胁评估模型并应用变量消元法进行推理计算.实验结果表明,在小数据集条件下,本文的结构学习算法优于经典的二值粒子群优化算法,参数学习算法优于最大似然估计、保序回归及凸优化算法,并能够构建有效的威胁评估模型. Bayesian network is one of the main tools for data mining.In such cases as large equipment fault diagno-sis,geological disaster forecast,operational decision,etc,good results are expected to achieve based on small data sets. Therefore,this article focuses on the problem of learning Bayesian network from small data sets.Firstly,the structure con-straint model based on the probability distribution of the connection was built.Then,the improved-Bayesian Dirichlet-binary particle swarm optimization algorithm was proposed.Secondly,the monotonicity parameter constraint model was defined and the monotonicity constraint estimation algorithm was proposed.Finally,the proposed algorithm was applied to construct the threat assessment model.Then,the model was used for reasoning with the variable elimination method.Experimental results reveal that the structure learning algorithm outperforms classical binary particle swarm optimization algorithm and the param-eter learning method surpasses maximum likelihood estimation,isotonic regression and convex optimization method for small data sets.The threat assessment model is also proved to be effective.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第6期1504-1511,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.60774064 No.61305133) 全国高校博士点基金(No.20116102110026) 中央高校基本科研业务费专项基金(No.3102015KY0902 No.3102015BJ(Ⅱ)GH01)
关键词 贝叶斯网络 小数据集 二值粒子群优化 威胁评估 Bayesian network small data sets binary particle swarm optimization threat assessment
  • 相关文献

参考文献4

二级参考文献43

  • 1王双成,苑森淼,王辉.基于类约束的贝叶斯网络分类器学习[J].小型微型计算机系统,2004,25(6):968-971. 被引量:30
  • 2阮本清,韩宇平,王浩,蒋任飞.水资源短缺风险的模糊综合评价[J].水利学报,2005,36(8):906-912. 被引量:105
  • 3史建国,高晓光.离散动态贝叶斯网络的直接计算推理算法[J].系统工程与电子技术,2005,27(9):1626-1630. 被引量:36
  • 4杨炘,王鸿冰,邢云,罗伟中.中国国际石油投资模糊数学综合评价方法[J].清华大学学报(自然科学版),2006,46(6):855-857. 被引量:13
  • 5胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 6Friedman N. The Bayesian structural EM algorithm[C]// Fourteenth Annual Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, 1998: 125-133.
  • 7Sehgal M S, Gondal I, Dooley L S. Collateral missing value imputation: A new robust missing value estimation algorithm for microarray data[J]. Bioinformatics, 2005, 21(10): 2417-2423.
  • 8Oba S, Sato M, Takemasa I, et al. A Bayesian missing value estimation method for gene expression profile data[J]. Bioinformatics, 2003, 19(16): 2088 2096.
  • 9Altendorf E, Restificar A C, Dietterich T G. Learning from sparse data by exploiting monotonicity constraints[C]// Proceedings of the 21st Conference in Uncertainty in Artificial Intelligence. Arlington, Virginia: AUAI Press, 2005: 18-26.
  • 10Feelders A. A new parameter learning method for Bayesian networks with qualitative influences[C]//The Twenty- Third Conference on Uncertainty in Artificial Intelligence. Corvallis, Oregon: AUAI Press, 2007:117 124.

共引文献37

同被引文献56

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部