期刊文献+

基于GA-BP神经网络的人脸识别方法研究 被引量:2

Research on the Face Recognition Approach Based on the GA-BP Neural Network
下载PDF
导出
摘要 针对传统的BP神经网络算法易陷入局部极小点、训练速度慢的问题,文章用遗传算法(Genetic Algorithm,GA)来优化BP神经网络,实现全局寻优和局部寻优相结合,有效提高神经网络的学习性能和收敛性。实验结果表明,文章提出的方法训练速度快,克服其陷入局部最优的缺点,具有很好的识别性能。 To solve the problem that traditional BP neural network algorithm is easily got stuck in local minima and with low training speed, this paper studies the optimization of BP neural network by using genetic algorithm, which successfully combine global and local optimization and effectively improve the learning ability and convergence of neural network. The experimental results show that the method introduced in this paper has the advantage of fast speed which avoids the network being stuck in local minima as well as good recognition performance.
出处 《安徽职业技术学院学报》 2016年第2期30-32,共3页 Journal of Anhui Vocational & Technical College
关键词 特征提取 人脸识别 GA BP神经网络 feature extraction face recognition GA BP neural network
  • 相关文献

参考文献4

二级参考文献30

  • 1陈高曙,曾庆宁.Eigenface和Fisherface用于人脸识别的性能比较[J].中国科技信息,2006(9):199-201. 被引量:4
  • 2CAO D Y,YANG B R.An improved face recognition algorithm based on SVD[C].Singapore:Proc.of the 2nd International Conference on Computer and Automation Engineering (ICCAE),2010:109-112.
  • 3OTHMAN H,ABOULNASR T.A separable low complexity 2D HMM with application to face recognition[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2003,25(10):1229-1238.
  • 4TUEK M,PENRLAND A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscierce,1991,3(1):71-86.
  • 5BELHUMEUR P N,HESPANHA J P,KRIEGMAN D J.Eigenfaces vs.fisherfaces:Recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 6JAVIER R S,PABLO N.Eigenspace-based face recognition:A comparative study of different approaches[J].IEEE Trans.on Systems,Man,and Cybernetics-Part C:applications and Reviews,2005,35(3):315-325.
  • 7TRINA R,CHRIS B,TANYA P.3D Face recognition using 3D alignment for PCA[C].Proceedings of the 2006IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06),2006:1392-1398.
  • 8LEI Y Q,CHEN D J,YUAN M L,et al.3D face recognition by surface classification image and PCA[C].Dubai:The second international conference on machine vision(ICMV '09),2009:145-149.
  • 9MATA F J S,BERRETTI S,DEL B A,et al.Using geodesic distances for 2D-3D and 3D-3D face recognition[C].Modena:14th International Conference on Digital Object Identifier,2007:95-100.
  • 10TANG H L,SUN Y F,YIN B C,et al.Expression-robust 3D face recognition using LBP representation[C].Suntec City:2010 IEEE International Conference on Multimedia and Expo (ICME),2010:334-339.

共引文献261

同被引文献20

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部