期刊文献+

高斯长脉冲激光辐照单晶硅温度场的数值模拟 被引量:1

Numerical Simulation of Temperature Field of Single-crystal Silicon Irradiated by Gauss Long Pulse Laser
下载PDF
导出
摘要 建立二维轴对称模型,通过Matlab软件对长脉冲高斯激光与单晶硅相互作用的加热过程进行数值模拟。分析不同激光功率密度和辐照时间作用下单晶硅的温度分布和温度历史,估算单晶硅的熔融损伤阈值和热量沉积深度。结果表明:单晶硅的熔融损伤阈值的功率密度I_0=0.22 MW/cm^2且激光热量沉积深度大约在1 mm范围内;单晶硅的温度随激光功率密度和辐照时间的增加而升高,且随着光斑半径方向的延伸与靶材厚度的增加而逐渐减小;在脉冲作用期间,硅表面中心温度迅速上升,这主要由高斯激光的能量分布特点决定;在激光作用结束后,辐照区的热量通过热传导效应从高温区向低温区转移,单晶硅的表面中心温度随时间的增加而缓慢下降,最后趋于室温。 The two - dimensional axial symmetric model was established to numerically analyze the process of heating of the gauss long-pulse laser with the single -crystal silicon(SCS). With the different laser power density and irradiating time, the gauss long-pulse laser interactions with the SCS in the temperature distribution and evolvement were analyzed. The melting damage threshold and heat deposited depth of single - crystal silicon were estimated. The results show that the melting damage threshold of single - crystal silicon is about 0.22MW/cm^2 and the heat deposited of long laser pulse in the SCS surface is around one millimeter. The temperature of single -crystal silicon will be enlarged as laser power density and irradiating time increasing, while the temperature of SCS will decrease along with stretching of speckle radius direction and increase of targets thickness. The temperature of center surface of SCS will rise rapidly during the action of laser, which is mainly decided by the gauss laser energy distribution, and after the action of laser, the heat of irradiating zone flows from the high temperature area to the low temperature area by the effect of heat conduction, with the result that The temperature of center surface of SCS will decrease slowly as time increasing and eventually tend to room temperature.
出处 《西华大学学报(自然科学版)》 CAS 2016年第4期44-47,共4页 Journal of Xihua University:Natural Science Edition
基金 四川省科技支撑计划(2014GZ0003) 四川省教育厅重点项目(2233443)
关键词 高斯长脉冲 单晶硅 温度场 熔融损伤阈值 数值模拟 gauss long pulse single -crystal silicon temperature field melting damage threshold numerical simulation
  • 相关文献

参考文献11

  • 1Fedosejevs R, Kirkwood S E, Holenstein R. Femotosecond In- teraction Processes Near Threshold: Damage and Ablation [J]. SPIE, 2007,6403(2) :1.
  • 2Crawford T H, Yamanaka J, Hsu E M, et al. High - resolution Observations of an Amorphous Layer and Subsurface Damage Formed by Femtosecond Laser Irradiation of Silicon [J]. Applied Physics, 2008,103 (053104) :1.
  • 3Rublack T, Hartnaner S, Mergner M, et al. Mechanism of Selec- tive Removal of Transparent Layers on Semiconductors Using Ultrashort Laser Pulses [J]. SPIE ,2012 ,8247 (2) : 1.
  • 4孙承伟 陆启生 范正修.激光辐照效应[M].北京:国防工业出版社,2002.336-381.
  • 5罗晋生,刘恩科,朱秉生.半导体物理学[M].北京:电子工业出版社,2007.
  • 6Yilbas B S, Kaylon M. Analytical Solution for Pusled Laser Heating Process:Convective Boundary Condition Case [J]. Int J Heat, Mass, Transfer,2002,45(7) : 1571.
  • 7李洪敬.长脉冲激光辐照下单层HfO_2薄膜的温度场分析[J].应用光学,2014,35(5):912-916. 被引量:6
  • 8付耀龙,温泽胜,张喜和.长脉冲激光与硅材料相互作用的温度场[J].长春大学学报,2012,22(10):1212-1214. 被引量:3
  • 9范卫星,王平秋,韩敬华,刘全喜,杨洁,郭超.重复激光脉冲作用下薄膜损伤演化规律研究[J].激光技术,2014,38(2):210-213. 被引量:4
  • 10马再如,吉驭嫔,王树德,徐竞跃.宽带啁啾光脉冲在CPA激光系统中的非线性传输[J].西华大学学报(自然科学版),2010,29(2):90-93. 被引量:1

二级参考文献37

  • 1彭翰生.超强固体激光及其在前沿学科中的应用(1)[J].中国激光,2006,33(6):721-729. 被引量:29
  • 2S. W. Bahk, P. Rousseau, T. A. Planchon,et al. Generation and Characterization of the Highest Laser Intensities (10^22 W/cm^2 ) [J]. Opt. Lett., 2004,29(24) :2837-2839.
  • 3A. Levy, T. Ceccotti, P. Oliveira,et at. Double Plasma Mirror for Ultrahigh Temporal Contrast Ultra inTense Laser Pulses [ J ]. Opt. Lett. , 2007,32(3) :310-312.
  • 4V. Chvykov, P. Rousseau, S. Reed, et al. Generation of 10^1l Contrast 50 TW Laser Pulses [J]. Opt. Lett. , 2006, 31 (10) : 1456- 1458.
  • 5Agrawal G.P.非线性光纤光学原理及应用[M].贾东方,译.北京:电子工业出版社,2003.
  • 6Siegman A E. Lasers [ M ]. Calif: Universty Sciencelboks, 1986.
  • 7Chang Y-H. Propagation of Light Pulses in a Chirped-pluseamp Lification Laser[ J]. IEEE J. Q. E, 1993,29:270-280.
  • 8Treacy E. B. Optical Pluse Compression with Diffraction Gratings[J]. IEEE J. Q. E., 1969, 5(9) : 454-458.
  • 9Amera M S, E1-Ashrya M A, Dosserb L R, et al. Applied Surface Science, 2005, 242: 162.
  • 10Bennis A, l.omonosov A M, Shen Z H, et al. Applied Physics Letters, 2006, 88: 101915.

共引文献112

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部