期刊文献+

救援机器人的目标检测与跟踪系统研究

Research on Target Detection and Tracking System of Rescue Robot
下载PDF
导出
摘要 目标检测与跟踪系统是救援机器人实现自主搜救作业的基础。针对Robo Cup Rescue救援比赛项目,救援机器人通过Kinect摄像头获取环境视觉信息,采用与目标模板的SURF特征匹配实现视频帧中的目标检测,同时结合RANSAC算法对错配点进行剔除从而提高检测精度;使用TLD跟踪算法对检测到的目标进行跟踪,同时结合目标深度信息,推算出其世界坐标,驱动机器人实现目标的跟踪。实验结果表明,该方法可快速检测到目标并驱动机器人跟踪。 This paper is used for RoboCup Rescue Competition,the environmental visual information of a Rescue robot is obtained through a Kinect,target detection in video frames is achieved by using the SURF feature matching with the target template,while combined with the RANSAC algorithm to eliminate the mismatch points for improving the detection accuracy. TLD tracking algorithm is used to track the detected target,while the world coordinate of the detected target is calculated by combining the depth information,which helps the robot to track the target.
出处 《工业控制计算机》 2016年第6期96-98,100,共4页 Industrial Control Computer
关键词 目标检测与跟踪 SURF RANSAC TLD跟踪算法 target detection and tracking,SURF,RANSAC,TLD tracking algorithm
  • 相关文献

参考文献7

  • 1翟俊海,赵文秀,王熙照.图像特征提取研究[J].河北大学学报(自然科学版),2009,29(1):106-112. 被引量:74
  • 2Bay H, Tuytelaars T, Van Gool L, Surf: Speeded up robust features [M]. Computer vision-ECCV 2006. Springer Berlin Heidelberg, 2006:404-417.
  • 3Fischler M A,Bolies R C.Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography [J].Communications of the ACM, 1981, 24(6): 381-395.
  • 4马丽,常发亮,乔谊正.基于均值漂移算法和粒子滤波算法的目标跟踪[J].模式识别与人工智能,2006,19(6):787-793. 被引量:20
  • 5Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection [J]. Pattern Analysis and Machine Intelligence, IEEE Transac- tions on, 2012, 34(7): 1409-1422.
  • 6Stein F.Efficient computation of optical flow using the census transform[M],Pattern Recognition. Springer Berlin Heidelberg, 2004:79-86.
  • 7Lucas B D, Kanade T. An iterative image registration tech- nique with an application to stereo vision [C]//IJCAI.1981, 81: 674-679.

二级参考文献53

  • 1HUM. Visual pattern recognition by moment invariant [J]. IRE Trans on Inf Theory, 1962, 8:179-187.
  • 2KHOTANZAD. A zernike moment based rotation invariant features for pattern recognition [J]. SPIE, 1988, 1002:212- 219.
  • 3SHEN D, HORACE H SIP. Discriminative wavelet shape descriptors for recognition of 2-D patterns [J]. Pattern Recognition, 1999,32(2) :151-165.
  • 4HARALICK R M, SHANMUGAM K, DINSTEIN I. Texture features for image classification [J]. IEEE Trans on System, Man and Cybernetics, 1973, 8(6):610-621.
  • 5TAMURA H, MORI S, YAMAWAKI T. Texture features corresponding to visual perception [J]. IEEE Trans on System, Man and Cybernetics, 1978,8(6):460-473.
  • 6ROSENFELD A, THURSTON M. Edge and curve detection for visual scene analysis [J]. IEEE Trans Computer, 1971, 20:512-519.
  • 7HONG Z Q. Algebraic feature extraction of image for recognition [J]. Pattern Recognition, 1991, 24(3) :211-219.
  • 8FREDRIC M HAM, ICICA KOSTANIC. Principles of neurocomputing for science and engineering [M], McGraw-Hill, 2003:396-407.
  • 9KIRBY M, SIROVICH L. Application of the Karhunen-Loeve procedure for the characterization of human faces [J]. IEEE Trans Pattern Anal Mach Intell, 1990, 12(1):103-108.
  • 10ETEMAD K, CHELLAPPA R. Diseriminant analysis for recognition of human face images[J]. J Opt Soc Amer A, 1997, 14(8) :1724-1733.

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部