期刊文献+

基于量子逻辑技术的铝离子光频标研究进展 被引量:3

Research progress of Al^+ ion optical frequency standard based on quantum logic technique
原文传递
导出
摘要 光频标(光钟)在时间及长度定义、基本物理常数及其随时间变化的测量、相对论检验、甚长基线干涉仪、测地学以及全球卫星导航定位等领域都有广泛的应用.一台光频标由超稳激光、光梳和囚禁的离子或原子组成.其准确度受到多普勒频移、塞曼频移、斯塔克频移、碰撞频移、黑体辐射频移等的影响.其中黑体辐射频移是对于系统误差影响较难评估也较难控制的一项,而铝离子在目前所有正在发展的光频标里面是黑体辐射频移最小的一个,其不确定度仅有4.0×10^(-19),因此铝离子光频标是很有前途的一种光频标.本文将分别介绍光频标的3个组成部分,以及当前基于量子逻辑技术铝离子频标的基本原理和华中科技大学的最新研究进展. Optical atomic clocks have many applications in the definition of the time and the length, measurement of fundamental constants and their potential variations with time, testing of relativity, very long baseline interferometry, geodesy, and global navigation satellite systems. An optical clock consists of three parts: ultra-stable laser, frequency comb and trapped ions or atoms. The accuracy of optical atomic clocks can be affected by Doppler shift, Zeeman shift, Stark shift, collision shift, blackbody radiation (BBR) shift, etc. The BBR shift is very difficult to be characterized and controlled. Among all optical atomic clocks under current development, Al^+ optical clock has the smallest BBR shift at a level of 4.0 × 10^-19, therefore the Al^+ is a promising ion for high-accuracy optical frequency standard. In this article we give a review on the three parts of optical frequency standards, the basic working principle of Al^+ ion optical frequency standard based on quantum logic technique, and research progress of an Al^+ optical clock under development at Huazhong University of Science and Technology.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2016年第7期33-51,共19页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金(编号:11304109,91336213,91536116,11174095,61108025) 国家重点基础研究发展规划(编号:2012CB821300) 新世纪人才项目(编号:NCET-11-0176)资助
关键词 光频标 离子阱 超稳激光 量子逻辑 铝离子 optical frequency standard, ion trap, ultra-stable cavity, quantum logic, Al^+ ion
  • 相关文献

参考文献2

二级参考文献45

  • 1Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 Phys. Rev. Lett. 80 2089.
  • 2Diddams S A, Udem Th, Bergquist J C, Curtis E A, Drullinger R E, Hollberg L, Itano W M, Lee W D, Oates C W, Vogel K R and Wineland D J 2001 Science 293 825.
  • 3Diddams S A, Bergquist J C, Jefferts S R and Oates C W 2004 Science 306 1318.
  • 4Rosenband T et al 2008 Science 319 1808.
  • 5Scholz M et al 2013 Appl. Phys. Lett. 103 051114.
  • 6Hemmati H, Bergquist J C and Itano W M 1983 Opt. Lett. 8 73.
  • 7Watanabe M, Hayasaka K, Imajo H, Umezu J and Urabe S 1991 Appl. Phys. B 53 11.
  • 8Watanabe M, Hayasaka K, Imajo H and Urabe S 1992 Opt. Lett. 17 46.
  • 9Berkeland D J, Cruz F C and Bergquist J C 1997 Appl. Opt. 36 4159.
  • 10Masuda H, Kimura K, Eguchi N and Kubota S 2001 OSA Trends Opt. Photon. 50 490.

共引文献15

同被引文献12

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部