期刊文献+

H^(1+)和He^(2+)激发Au靶的M-X射线辐射 被引量:2

M-shell X-ray production induced by H^(1+) and He^(2+) on Au
原文传递
导出
摘要 利用兰州重离子加速器国家实验室提供的H^(1+)和He^(2+)的离子束入射Au靶表面,测量了激发靶原子的M壳层特征X射线辐射.实验结果显示:靶原子的特征X射线M_α和M_ζ产额以及X射线产生截面随入射离子的动能增加而增加,实验获得X射线产生截面数值与利用BEA近似、PWBA模型以及ECPSSR理论估算的结果相比较大,实验截面随动能增加的趋势同PWBA模型估算的趋势较为接近.通过进一步分析,我们认为:当入射离子接近高Z靶原子时,由于高Z靶原子的M壳层电子束缚能相对较小,使靶原子产生双重离化和多重离化,荧光产额显著增强,使X射线产生截面增大. The X-ray emissions from H^1+ and He^2+ beams impinging on Au surface are measured. The results show that the yields and production cross sections of Mζ and Mα of target atom Au increased with the kinetic energy of H^1+ and He^2+. The measured production cross sections are higher than the theoretical predictions based on the PWBA approximation, the BEA approximation and ECPSSR theory. The measured production cross sections increased trend with ionic kinetic energy close to the theoretical predictions based on the PWBA. The fluorescence yield is enhanced dramatically owing to multiple vacancies as the projectiles approach target atoms. In the low projectile-energy region (E 〈1 MeV), because the projectiles velocities are nearly the M-shell electronic Bohr velocity of the high-Z target atom, and the bound of target atomic nucleus to electron decrease, so multiple ionization effects easily occur. One would have to conclude that these theories clearly fail at low velocities due to the electrons be assumed to be at rest in the early stage of these theories were constituted.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2016年第7期100-107,共8页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金(编号:11075135) 陕西省教育厅科研计划(编号:15JK1793)资助项目
关键词 质子 X射线 产额 截面 proton, X-ray, yield, cross section
  • 相关文献

参考文献20

  • 1Bambynek W, Crasemann B, Fink R W, et al. X-ray fluorescence yield, auger and Coster--Kronig transition probabilities. Rev Mod Phys, 1972, 44:716-813.
  • 2McGuire J H, Richard P. Procedure for computing cross sections for single and multiple ionization of atoms in the binary-encounter approximation by the impact of heavy charged particles. Phys Rev A, 1973, 8:1374-1384.
  • 3Johnson D E, Basbas G, McDaniel F D. Nonrelativistic plane-wave Born-approximation calculations of direct Coulomb M-subshell ionization by charged particle. Atom Data Nucl Data, 1979, 24:1-11.
  • 4Brandt W, Lapicki G. Energy-loss effect in inner-shell coulomb ionization by heavy charged particles. Phys Rev A, 1981, 23:1717-1729.
  • 5Cohen D D, Stelcer E, Crawford J, et al. Comparison of proton and helium induced M subshell X-ray production cross sections with the ECUSAR theory. Nucl Instrum Meth B, 2014, 318:11-14.
  • 6Zhou X M, Zhao Y T, Cheng R, et al. K and L-shell X-ray production cross sections for 50-250 keV proton impact on elements with Z=26-30. Nucl Instrum Meth B, 2013, 299:61-67.
  • 7Humcane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 2014, 506: 343-350.
  • 8Agarwal B K. X-Ray Spectroscopy (2nd ed). Berlin: Springer-Verlag, 1991.89-104.
  • 9Zhang X A, Zhao Y T, Hoffmann D, et al. X-ray emission of Xe 30+ ion beam impacting on Au target. Laser Particle Beams, 2011, 29: 265-268.
  • 10Lapicki G, Mehta R, Duggan J L, et al. Multiple outer-shell ionization effect in inner-shell X-ray production by light ions. Phys Rev A, 1986, 34:3813-3821.

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部