摘要
We present high-performance enhancement-mode AlGaN/GaN metal-oxide-semiconductor highelectron mobility transistors(MOS-HEMTs) by a fluorinated gate dielectric technique.A nanolaminate of an Al_2O_3/La_xAl_(1-x)O_3/Al_2O_3 stack(x≈0.33) grown by atomic layer deposition is employed to avoid fluorine ions implantation into the scaled barrier layer.Fabricated enhancement-mode MOS-HEMTs exhibit an excellent performance as compared to those with the conventional dielectric-last technique,delivering a large maximum drain current of 916 mA/mm and simultaneously a high peak transconductance of 342 mS/mm.The balanced DC characteristics indicate that advanced gate stack dielectrics combined with buffered fluorine ions implantation have a great potential for high speed GaN E/D-mode integrated circuit applications.
We present high-performance enhancement-mode AlGaN/GaN metal-oxide-semiconductor highelectron mobility transistors(MOS-HEMTs) by a fluorinated gate dielectric technique.A nanolaminate of an Al_2O_3/La_xAl_(1-x)O_3/Al_2O_3 stack(x≈0.33) grown by atomic layer deposition is employed to avoid fluorine ions implantation into the scaled barrier layer.Fabricated enhancement-mode MOS-HEMTs exhibit an excellent performance as compared to those with the conventional dielectric-last technique,delivering a large maximum drain current of 916 mA/mm and simultaneously a high peak transconductance of 342 mS/mm.The balanced DC characteristics indicate that advanced gate stack dielectrics combined with buffered fluorine ions implantation have a great potential for high speed GaN E/D-mode integrated circuit applications.
基金
supported by the National Natural Science Foundation of China(Nos.61504125,61474101,61106130 61076120,61505181)
the Natural Science Foundation of Jiangsu Province of China(Nos.BK20131072,BE2012007,BK2012516)