一类带Neumann边值问题的p(x)-Kirchhoff型问题解的存在性
Multiple solutions for a p(x)-Kirchhoff type with the Neumann boundary condition
摘要
利用Ricceri's三临界点定理,研究了一类带Neumann边值条件的p(x)-Kirchhoff型问题解的存在性与多解性.
Based on Ricceri ^ s three critical points theorem, this paper studies the existence and multiplicity of solutionsfor a class o i p ( x ) - Kirchhoff - type equations with the Neumann boundary condition.
出处
《云南民族大学学报(自然科学版)》
CAS
2016年第4期336-340,共5页
Journal of Yunnan Minzu University:Natural Sciences Edition
基金
国家自然科学基金(11461083)
云南省教育厅科学研究基金(2015Y222)
参考文献17
-
1KIRCHHOFF G,HENSEL K. vorlesumgen uber mathematische phygik: Bd Mechank (3 Aufl 1883) [M]. BG Teubner, 1883.
-
2LIONS J L. On some questions in boundary value problems of mathematical p h y sics[J]. North - Holland Mathematics Studies,1978, 3 0 :284 -3 4 6 .
-
3JULIO F , CORREA S A , FIGUEIREDO G M. On an elliptic equation of p - Kirchhof type via variational methods [J]. Bulletinof the Australian Mathematical Society, 2006, 7 4 (2 ) :263 -2 7 7 .
-
4CORREA F J S A, FIGUEIREDO G M. On a p - Kirchhoff equation via Krasnoselskii( s genus[J] . Applied Mathematics Letters,2009, 2 2 :819 -8 2 2 .
-
5LIU D. On a p - Kirchhoff equation via Fountain Theorem and Dual Fountain Theorem [J]. Nonlinear A nal, 2010, 72 :302 - 308.
-
6DAI G, HAO R. Existence of solutions for a p ( a:) - Kirchhoff - type equation[J] . J Math Anal Appl, 2009, 3 5 9 :275 -2 8 4 .
-
7DAI G , LIU D. Infinitely many positive solutions for a p ( x ) - Kirchhoff - type equation[J]. J Math Anal Appl, 2009 , 359 :704-7 1 0 .
-
8DAI G , WEI J. Infinitely many non - negative solutions for a p ( x ) - Kirchhoff - type problem with Dirichlet boundary condition[J] . Nonlinear Analysis, 2010, 7 3 (1 0 ) :3420 -3 430 .
-
9DAI Guo-wei. Three solutions for a nonlocal Dirichlet boundary value problem involving the p ( x ) - Laplacian[J]. Applicable Analysis,2011, 2011 (1) : 191 -2 1 0 .
-
10AOUAOUI S. Existence of three solutions for some equation of Kirchhoff type involving variable exponents[J] . Applied Mathematics& Computation, 2012, 218(1 3) :7184 -7 1 9 2 .
-
1周君君.脉冲微分方程Neumann边值问题多解的存在性[J].洛阳师范学院学报,2017,36(2):15-18.
-
2罗李平,罗振国,曾云辉.一类带脉冲扰动的抛物系统的(全)振动性问题[J].应用数学,2016,29(2):246-251.
-
3罗李平,蔡江涛,王艳群,谢作政,王春发.一类拟线性脉冲时滞双曲系统的(强)振动性[J].衡阳师范学院学报,2012,33(3):1-6.
-
4赵小妮.对第二类Holling型反应扩散方程组解的分岔讨论[J].天津理工大学学报,2016,32(1):61-64. 被引量:1
-
5杨芳,安海龙.具有功能反应的一类食物链交错扩散模型整体解的存在性[J].应用数学,2011,24(2):220-226. 被引量:1
-
6杨芳.三级营养食物链交错扩散模型的整体解[J].纯粹数学与应用数学,2008,24(2):408-416. 被引量:2